These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33556657)

  • 1. Graphene oxide and Lambda exonuclease assisted screening of L-carnitine aptamers and the site-directed mutagenesis design of C-rich structure aptamer.
    Xing L; Zhao Y; Gong M; Liu X; Zhang Y; Li D; He Z; Yan P; Yang J
    Biochem Biophys Res Commun; 2021 Mar; 545():171-176. PubMed ID: 33556657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide-assisted non-immobilized SELEX of chiral drug ephedrine aptamers and the analytical binding mechanism.
    Xing L; Zhang Y; Yang J
    Biochem Biophys Res Commun; 2019 Jun; 514(1):134-139. PubMed ID: 31027736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and Identification of Novel Aptamers Specific for Clenbuterol Based on ssDNA Library Immobilized SELEX and Gold Nanoparticles Biosensor.
    Liu X; Lu Q; Chen S; Wang F; Hou J; Xu Z; Meng C; Hu T; Hou Y
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30216975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer.
    Kim AR; Kim SH; Kim D; Cho SW; Son A; Yoon MY
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31892242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple GO-SELEX for efficient screening of flexible aptamers.
    Nguyen VT; Kwon YS; Kim JH; Gu MB
    Chem Commun (Camb); 2014 Sep; 50(72):10513-6. PubMed ID: 25072407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a ssDNA aptamer system with reduced graphene oxide (rGO) to detect nonylphenol ethoxylate in domestic detergent.
    Kim AR; Ha NR; Jung IP; Kim SH; Yoon MY
    J Mol Recognit; 2019 Mar; 32(3):e2764. PubMed ID: 30251354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly selective and sensitive detection of insulin with chemiluminescence biosensor based on aptamer and oligonucleotide-AuNPs functionalized nanosilica @ graphene oxide aerogel.
    Sun Y; Lin Y; Sun W; Han R; Luo C; Wang X; Wei Q
    Anal Chim Acta; 2019 Dec; 1089():152-164. PubMed ID: 31627812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive detection of 25-HydroxyvitaminD
    Lee BH; Nguyen VT; Gu MB
    Biosens Bioelectron; 2017 Feb; 88():174-180. PubMed ID: 27520502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide.
    Chen X; Huang Y; Duan N; Wu S; Xia Y; Ma X; Zhu C; Jiang Y; Wang Z
    J Agric Food Chem; 2014 Oct; 62(42):10368-74. PubMed ID: 25265190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins.
    Wang X; Gao X; He J; Hu X; Li Y; Li X; Fan L; Yu HZ
    Analyst; 2019 Jun; 144(12):3826-3835. PubMed ID: 31090762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles.
    Wu Y; Zhan S; Wang L; Zhou P
    Analyst; 2014 Mar; 139(6):1550-61. PubMed ID: 24496116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide.
    Kou Q; Wu P; Sun Q; Li C; Zhang L; Shi H; Wu J; Wang Y; Yan X; Le T
    Anal Bioanal Chem; 2021 Jan; 413(3):901-909. PubMed ID: 33184760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity analysis of DNA aptamer-peptide interactions using gold nanoparticles.
    Tan L; Neoh KG; Kang ET; Choe WS; Su X
    Anal Biochem; 2012 Feb; 421(2):725-31. PubMed ID: 22214880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of highly specific aptamers to Vibrio parahaemolyticus using cell-SELEX powered by functionalized graphene oxide and rolling circle amplification.
    Song S; Wang X; Xu K; Li Q; Ning L; Yang X
    Anal Chim Acta; 2019 Apr; 1052():153-162. PubMed ID: 30685034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose.
    Miyachi Y; Shimizu N; Ogino C; Fukuda H; Kondo A
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3619-22. PubMed ID: 19450981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables.
    Kong Q; Yue F; Liu M; Huang J; Yang F; Liu J; Li J; Li F; Sun X; Guo Y; Zhu Y
    Anal Chim Acta; 2022 Apr; 1202():339677. PubMed ID: 35341514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ssDNA library immobilized SELEX technique for selection of an aptamer against ractopamine.
    Duan N; Gong W; Wu S; Wang Z
    Anal Chim Acta; 2017 Apr; 961():100-105. PubMed ID: 28224901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and identification of an ssDNA aptamer to NB4 cell.
    Zhang XH; Wang W; Chen X
    J Clin Lab Anal; 2021 Apr; 35(4):e23718. PubMed ID: 33522630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of single-stranded DNA aptamers for specific Bisphenol a detection.
    Jo M; Ahn JY; Lee J; Lee S; Hong SW; Yoo JW; Kang J; Dua P; Lee DK; Hong S; Kim S
    Oligonucleotides; 2011; 21(2):85-91. PubMed ID: 21413891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.