These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33557020)

  • 1. Biased Brownian Motion of KIF1A and the Role of Tubulin's C-Terminal Tail Studied by Molecular Dynamics Simulation.
    Mizuhara Y; Takano M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33557020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of kinesin-3 family member KIF1A.
    Lessard DV; Zinder OJ; Hotta T; Verhey KJ; Ohi R; Berger CL
    J Biol Chem; 2019 Apr; 294(16):6353-6363. PubMed ID: 30770469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin.
    Kanada R; Kuwata T; Kenzaki H; Takada S
    PLoS Comput Biol; 2013; 9(2):e1002907. PubMed ID: 23459019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Brownian Ratchet Model Explains the Biased Sidestepping of Single-Headed Kinesin-3 KIF1A.
    Mitra A; Suñé M; Diez S; Sancho JM; Oriola D; Casademunt J
    Biophys J; 2019 Jun; 116(12):2266-2274. PubMed ID: 31155147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state.
    Shi XX; Guo SK; Wang PY; Chen H; Xie P
    Proteins; 2020 Apr; 88(4):545-557. PubMed ID: 31589786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased Brownian motion as a mechanism to facilitate nanometer-scale exploration of the microtubule plus end by a kinesin-8.
    Shin Y; Du Y; Collier SE; Ohi MD; Lang MJ; Ohi R
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3826-35. PubMed ID: 26150501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin.
    Zhang Z; Goldtzvik Y; Thirumalai D
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9838-E9845. PubMed ID: 29087307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin.
    Okada Y; Higuchi H; Hirokawa N
    Nature; 2003 Jul; 424(6948):574-7. PubMed ID: 12891363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the structural and energetic basis of kinesin-microtubule binding using computational alanine-scanning mutagenesis.
    Li M; Zheng W
    Biochemistry; 2011 Oct; 50(40):8645-55. PubMed ID: 21910419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 15 A resolution model of the monomeric kinesin motor, KIF1A.
    Kikkawa M; Okada Y; Hirokawa N
    Cell; 2000 Jan; 100(2):241-52. PubMed ID: 10660047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatically biased binding of kinesin to microtubules.
    Grant BJ; Gheorghe DM; Zheng W; Alonso M; Huber G; Dlugosz M; McCammon JA; Cross RA
    PLoS Biol; 2011 Nov; 9(11):e1001207. PubMed ID: 22140358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinesin-3 Responds to Local Microtubule Dynamics to Target Synaptic Cargo Delivery to the Presynapse.
    Guedes-Dias P; Nirschl JJ; Abreu N; Tokito MK; Janke C; Magiera MM; Holzbaur ELF
    Curr Biol; 2019 Jan; 29(2):268-282.e8. PubMed ID: 30612907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.
    Kevenaar JT; Bianchi S; van Spronsen M; Olieric N; Lipka J; Frias CP; Mikhaylova M; Harterink M; Keijzer N; Wulf PS; Hilbert M; Kapitein LC; de Graaff E; Ahkmanova A; Steinmetz MO; Hoogenraad CC
    Curr Biol; 2016 Apr; 26(7):849-61. PubMed ID: 26948876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface.
    Freedman H; Luchko T; Luduena RF; Tuszynski JA
    Proteins; 2011 Oct; 79(10):2968-82. PubMed ID: 21905119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide-dependent structural fluctuations and regulation of microtubule-binding affinity of KIF1A.
    Kanada R; Takagi F; Kikuchi M
    Proteins; 2015 May; 83(5):809-19. PubMed ID: 25684691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating role of conformational changes of microtubule in regulating its binding affinity to kinesin by all-atom molecular dynamics simulation.
    Shi XX; Fu YB; Guo SK; Wang PY; Chen H; Xie P
    Proteins; 2018 Nov; 86(11):1127-1139. PubMed ID: 30132979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A.
    Lee JR; Shin H; Choi J; Ko J; Kim S; Lee HW; Kim K; Rho SH; Lee JH; Song HE; Eom SH; Kim E
    EMBO J; 2004 Apr; 23(7):1506-15. PubMed ID: 15014437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct regulation of microtubule dynamics by KIF17 motor and tail domains.
    Acharya BR; Espenel C; Kreitzer G
    J Biol Chem; 2013 Nov; 288(45):32302-32313. PubMed ID: 24072717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of kinesin binding by the C-termini of tubulin.
    Skiniotis G; Cochran JC; Müller J; Mandelkow E; Gilbert SP; Hoenger A
    EMBO J; 2004 Mar; 23(5):989-99. PubMed ID: 14976555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A.
    Rashid DJ; Bononi J; Tripet BP; Hodges RS; Pierce DW
    J Pept Res; 2005 Jun; 65(6):538-49. PubMed ID: 15885113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.