These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 33557140)
1. An Inertial Measurement Unit-Based Wireless System for Shoulder Motion Assessment in Patients with Cervical Spinal Cord Injury: A Validation Pilot Study in a Clinical Setting. Bravi R; Caputo S; Jayousi S; Martinelli A; Biotti L; Nannini I; Cohen EJ; Quarta E; Grasso S; Lucchesi G; Righi G; Del Popolo G; Mucchi L; Minciacchi D Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557140 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study. Rigoni M; Gill S; Babazadeh S; Elsewaisy O; Gillies H; Nguyen N; Pathirana PN; Page R Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013931 [TBL] [Abstract][Full Text] [Related]
3. Shoulder Range of Motion Measurement Using Inertial Measurement Unit-Concurrent Validity and Reliability. Kaszyński J; Baka C; Białecka M; Lubiatowski P Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687955 [TBL] [Abstract][Full Text] [Related]
4. Reliability and validity analyzes of Kinect V2 based measurement system for shoulder motions. Çubukçu B; Yüzgeç U; Zileli R; Zileli A Med Eng Phys; 2020 Feb; 76():20-31. PubMed ID: 31882393 [TBL] [Abstract][Full Text] [Related]
5. Validity and Reliability of Inertial Measurement Units in Active Range of Motion Assessment in the Hip Joint. Stołowski Ł; Niedziela M; Lubiatowski B; Lubiatowski P; Piontek T Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960493 [TBL] [Abstract][Full Text] [Related]
6. Reliability of shoulder range of motion comparing a goniometer to a digital level. Mullaney MJ; McHugh MP; Johnson CP; Tyler TF Physiother Theory Pract; 2010 Jul; 26(5):327-33. PubMed ID: 20557263 [TBL] [Abstract][Full Text] [Related]
7. Validity and intra-examiner reliability of the Hawk goniometer versus the universal goniometer for the measurement of range of motion of the glenohumeral joint. Pérez-de la Cruz S; de León ÓA; Mallada NP; Rodríguez AV Med Eng Phys; 2021 Mar; 89():7-11. PubMed ID: 33608127 [TBL] [Abstract][Full Text] [Related]
8. Validation of an on-screen application-based measurement of shoulder range of motion over telehealth medium. Sahu D; Shah D; Joshi M; Shaikh S; Gaikwad P; Shyam A J Shoulder Elbow Surg; 2022 Jan; 31(1):201-208. PubMed ID: 34352402 [TBL] [Abstract][Full Text] [Related]
9. RELIABILITY AND VALIDITY OF THE HALO DIGITAL GONIOMETER FOR SHOULDER RANGE OF MOTION IN HEALTHY SUBJECTS. Correll S; Field J; Hutchinson H; Mickevicius G; Fitzsimmons A; Smoot B Int J Sports Phys Ther; 2018 Aug; 13(4):707-714. PubMed ID: 30140564 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of a Smartphone Software Application Compared With a Handheld Goniometer for Measuring Shoulder Range of Motion in Asymptomatic Adults. Soeters R; Damodar D; Borman N; Jacobson K; Shi J; Pillai R; Mehran N Orthop J Sports Med; 2023 Jul; 11(7):23259671231187297. PubMed ID: 37533501 [TBL] [Abstract][Full Text] [Related]
11. Measurement of Shoulder Range of Motion in Patients with Adhesive Capsulitis Using a Kinect. Lee SH; Yoon C; Chung SG; Kim HC; Kwak Y; Park HW; Kim K PLoS One; 2015; 10(6):e0129398. PubMed ID: 26107943 [TBL] [Abstract][Full Text] [Related]
12. Functional passive range of motion of individuals with chronic cervical spinal cord injury. Frye SK; Geigle PR; York HS; Sweatman WM J Spinal Cord Med; 2020 Mar; 43(2):257-263. PubMed ID: 31192777 [TBL] [Abstract][Full Text] [Related]
13. Assessment of shoulder range of motion using a commercially available wearable sensor-a validation study. Chan LYT; Chua CS; Chou SM; Seah RYB; Huang Y; Luo Y; Dacy L; Bin Abd Razak HR Mhealth; 2022; 8():30. PubMed ID: 36338310 [TBL] [Abstract][Full Text] [Related]
14. Validation of an innovative method of shoulder range-of-motion measurement using a smartphone clinometer application. Werner BC; Holzgrefe RE; Griffin JW; Lyons ML; Cosgrove CT; Hart JM; Brockmeier SF J Shoulder Elbow Surg; 2014 Nov; 23(11):e275-82. PubMed ID: 24925699 [TBL] [Abstract][Full Text] [Related]
15. Assessing Shoulder Biomechanics of Healthy Elderly Individuals During Activities of Daily Living Using Inertial Measurement Units: High Maximum Elevation Is Achievable but Rarely Used. Chapman RM; Torchia MT; Bell JE; Van Citters DW J Biomech Eng; 2019 Apr; 141(4):0410011-7. PubMed ID: 30758509 [TBL] [Abstract][Full Text] [Related]
16. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles. Goreham JA; MacLean KFE; Ladouceur M J Biomech; 2022 Mar; 134():111000. PubMed ID: 35217243 [TBL] [Abstract][Full Text] [Related]
17. Within-day reliability of shoulder range of motion measurement with a smartphone. Shin SH; Ro du H; Lee OS; Oh JH; Kim SH Man Ther; 2012 Aug; 17(4):298-304. PubMed ID: 22421186 [TBL] [Abstract][Full Text] [Related]
18. The Reliability and Validity of Wearable Inertial Sensors Coupled with the Microsoft Kinect to Measure Shoulder Range-of-Motion. Beshara P; Chen JF; Read AC; Lagadec P; Wang T; Walsh WR Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348775 [TBL] [Abstract][Full Text] [Related]
19. Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system: A validation study. Henschke J; Kaplick H; Wochatz M; Engel T Health Sci Rep; 2022 Sep; 5(5):e772. PubMed ID: 35957976 [TBL] [Abstract][Full Text] [Related]
20. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. Picerno P; Viero V; Donati M; Triossi T; Tancredi V; Melchiorri G J Rehabil Res Dev; 2015; 52(2):171-80. PubMed ID: 26230401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]