BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 33557162)

  • 21. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR.
    Yang F; Yu X; Liu C; Qu CX; Gong Z; Liu HD; Li FH; Wang HM; He DF; Yi F; Song C; Tian CL; Xiao KH; Wang JY; Sun JP
    Nat Commun; 2015 Sep; 6():8202. PubMed ID: 26347956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-IP assays for measuring GPCR-arrestin interactions.
    Wertz SL; Desimine VL; Maning J; McCrink KA; Lymperopoulos A
    Methods Cell Biol; 2019; 149():205-213. PubMed ID: 30616821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR.
    Miller WE; Houtz DA; Nelson CD; Kolattukudy PE; Lefkowitz RJ
    J Biol Chem; 2003 Jun; 278(24):21663-71. PubMed ID: 12668664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arrestins: Critical Players in Trafficking of Many GPCRs.
    Gurevich VV; Gurevich EV
    Prog Mol Biol Transl Sci; 2015; 132():1-14. PubMed ID: 26055052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New Insights into Arrestin Recruitment to GPCRs.
    Spillmann M; Thurner L; Romantini N; Zimmermann M; Meger B; Behe M; Waldhoer M; Schertler GFX; Berger P
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling.
    Barsi-Rhyne B; Manglik A; von Zastrow M
    Elife; 2022 Oct; 11():. PubMed ID: 36250629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Arrestin-1 Middle Loop in Rhodopsin Binding.
    Vishnivetskiy SA; Huh EK; Karnam PC; Oviedo S; Gurevich EV; Gurevich VV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor.
    Sensoy O; Moreira IS; Morra G
    ACS Chem Neurosci; 2016 Sep; 7(9):1212-24. PubMed ID: 27405242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Insights into the Intrinsically Disordered GPCR C-Terminal Region, Major Actor in Arrestin-GPCR Interaction.
    Guillien M; Mouhand A; Fournet A; Gontier A; Martí Navia A; Cordeiro TN; Allemand F; Thureau A; Banères JL; Bernadó P; Sibille N
    Biomolecules; 2022 Apr; 12(5):. PubMed ID: 35625550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes.
    Chaturvedi M; Maharana J; Shukla AK
    Cell; 2020 Mar; 180(6):1041-1043. PubMed ID: 32169216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors.
    Gurevich VV; Gurevich EV
    Pharmacol Ther; 2006 Jun; 110(3):465-502. PubMed ID: 16460808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation barcoding as a mechanism of directing GPCR signaling.
    Liggett SB
    Sci Signal; 2011 Aug; 4(185):pe36. PubMed ID: 21868354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling.
    Latorraca NR; Masureel M; Hollingsworth SA; Heydenreich FM; Suomivuori CM; Brinton C; Townshend RJL; Bouvier M; Kobilka BK; Dror RO
    Cell; 2020 Dec; 183(7):1813-1825.e18. PubMed ID: 33296703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural features of activated GPCR signaling complexes.
    Wang J; Hua T; Liu ZJ
    Curr Opin Struct Biol; 2020 Aug; 63():82-89. PubMed ID: 32485565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beta-arrestin signaling and regulation of transcription.
    Ma L; Pei G
    J Cell Sci; 2007 Jan; 120(Pt 2):213-8. PubMed ID: 17215450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers.
    Böttke T; Ernicke S; Serfling R; Ihling C; Burda E; Gurevich VV; Sinz A; Coin I
    EMBO Rep; 2020 Nov; 21(11):e50437. PubMed ID: 32929862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GRKs as Modulators of Neurotransmitter Receptors.
    Gurevich EV; Gurevich VV
    Cells; 2020 Dec; 10(1):. PubMed ID: 33396400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.
    Prokop S; Perry NA; Vishnivetskiy SA; Toth AD; Inoue A; Milligan G; Iverson TM; Hunyady L; Gurevich VV
    Cell Signal; 2017 Aug; 36():98-107. PubMed ID: 28461104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes.
    Zhan X; Gimenez LE; Gurevich VV; Spiller BW
    J Mol Biol; 2011 Feb; 406(3):467-78. PubMed ID: 21215759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Basis of Arrestin-Dependent Signal Transduction.
    Chen Q; Iverson TM; Gurevich VV
    Trends Biochem Sci; 2018 Jun; 43(6):412-423. PubMed ID: 29636212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.