BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33557312)

  • 1. Biological Safety Evaluation and Surface Modification of Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Katsuda SI
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants.
    Okazaki Y; Nagata H
    Sci Technol Adv Mater; 2012 Dec; 13(6):064216. PubMed ID: 27877543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Oxide Film of Implantable Metals by Electrochemical Impedance Spectroscopy.
    Okazaki Y
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31652695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia.
    Okazak Y; Nishimura E; Nakada H; Kobayashi K
    Biomaterials; 2001 Mar; 22(6):599-607. PubMed ID: 11219725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of metal release from various metallic biomaterials in vitro.
    Okazaki Y; Gotoh E
    Biomaterials; 2005 Jan; 26(1):11-21. PubMed ID: 15193877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of spatial design and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy.
    Sugino A; Ohtsuki C; Tsuru K; Hayakawa S; Nakano T; Okazaki Y; Osaka A
    Acta Biomater; 2009 Jan; 5(1):298-304. PubMed ID: 18706879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of metal concentrations in rat tibia tissues with various metallic implants.
    Okazaki Y; Gotoh E; Manabe T; Kobayashi K
    Biomaterials; 2004 Dec; 25(28):5913-20. PubMed ID: 15183605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Performance of Artificial Hip Stems Manufactured by Hot Forging and Selective Laser Melting Using Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Mori J
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants.
    Brizuela-Velasco A; Pérez-Pevida E; Jiménez-Garrudo A; Gil-Mur FJ; Manero JM; Punset-Fuste M; Chávarri-Prado D; Diéguez-Pereira M; Monticelli F
    Biomed Res Int; 2017; 2017():2785863. PubMed ID: 29318142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model.
    Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S
    J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of friction on anodic polarization properties of metallic biomaterials.
    Okazaki Y
    Biomaterials; 2002 May; 23(9):2071-7. PubMed ID: 11996049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone response to a novel Ti-Ta-Nb-Zr alloy.
    Stenlund P; Omar O; Brohede U; Norgren S; Norlindh B; Johansson A; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2015 Jul; 20():165-175. PubMed ID: 25848727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.
    Medvedev AE; Molotnikov A; Lapovok R; Zeller R; Berner S; Habersetzer P; Dalla Torre F
    J Mech Behav Biomed Mater; 2016 Sep; 62():384-398. PubMed ID: 27258932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.
    Yamaguchi S; Hashimoto H; Nakai R; Takadama H
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28946646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study.
    Wang X; Meng X; Chu S; Xiang X; Liu Z; Zhao J; Zhou Y
    J Mater Sci Mater Med; 2016 Sep; 27(9):139. PubMed ID: 27534399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biology of grit-blasted titanium alloy implants.
    Goldberg VM; Stevenson S; Feighan J; Davy D
    Clin Orthop Relat Res; 1995 Oct; (319):122-9. PubMed ID: 7554621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio?
    Zhao Q; Ueno T; Wakabayashi N
    Jpn Dent Sci Rev; 2023 Dec; 59():28-37. PubMed ID: 36819742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.