BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33557312)

  • 41. Osteoblastic behavior to zirconium coating on Ti-6Al-4V alloy.
    Lee BA; Kim HJ; Xuan YZ; Park YJ; Chung HJ; Kim YJ
    J Adv Prosthodont; 2014 Dec; 6(6):512-20. PubMed ID: 25551012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials.
    Park YJ; Song YH; An JH; Song HJ; Anusavice KJ
    J Dent; 2013 Dec; 41(12):1251-8. PubMed ID: 24060476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible.
    Wei N; Bin S; Jing Z; Wei S; Yingqiong Z
    Am J Dent; 2014 Jun; 27(3):171-6. PubMed ID: 25208367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants.
    Han CH; Johansson CB; Wennerberg A; Albrektsson T
    Clin Oral Implants Res; 1998 Feb; 9(1):1-10. PubMed ID: 9590939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys.
    Pylypchuk IeV; Petranovskaya AL; Gorbyk PP; Korduban AM; Markovsky PE; Ivasishin OM
    Nanoscale Res Lett; 2015 Dec; 10(1):1017. PubMed ID: 26297184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy.
    Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K
    J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of precoating surface treatments on fatigue of Ti-6A1-4V.
    Eberhardt AW; Kim BS; Rigney ED; Kutner GL; Harte CR
    J Appl Biomater; 1995; 6(3):171-4. PubMed ID: 7492807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effects of the mold temperature on the castability of titanium zirconium alloy for dental clinical use].
    Zhang Y; Guo T; Li Z
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2001 Jun; 19(3):178-80. PubMed ID: 12539408
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New Zr-Ti-Nb Alloy for Medical Application: Development, Chemical and Mechanical Properties, and Biocompatibility.
    Mishchenko O; Ovchynnykov O; Kapustian O; Pogorielov M
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183125
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early Healing Evaluation of Commercially Pure Titanium and Ti-6Al-4V Presenting Similar Surface Texture: An In Vivo Study.
    Castellano A; Gil LF; Bonfante EA; Tovar N; Neiva R; Janal MN; Coelho PG
    Implant Dent; 2017 Jun; 26(3):338-344. PubMed ID: 28406881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of Copper Alloying in a TNTZ-Cu
    Fowler L; Janse Van Vuuren A; Goosen W; Engqvist H; Öhman-Mägi C; Norgren S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Osteoblastic cell behaviour on modified titanium surfaces.
    Lukaszewska-Kuska M; Wirstlein P; Majchrowski R; Dorocka-Bobkowska B
    Micron; 2018 Feb; 105():55-63. PubMed ID: 29179009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.
    Fukuda A; Takemoto M; Saito T; Fujibayashi S; Neo M; Yamaguchi S; Kizuki T; Matsushita T; Niinomi M; Kokubo T; Nakamura T
    Acta Biomater; 2011 Mar; 7(3):1379-86. PubMed ID: 20883837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anti-inflammatory properties of S53P4 bioactive glass implant material.
    Barrak FN; Li S; Mohammed AA; Myant C; Jones JR
    J Dent; 2022 Dec; 127():104296. PubMed ID: 36116542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of Ce on the short-term biocompatibility of Ti-Fe-Mo-Mn-Nb-Zr alloy for dental materials.
    Yu SR; Zhang XP; He ZM; Liu YH; Liu ZH
    J Mater Sci Mater Med; 2004 Jun; 15(6):687-91. PubMed ID: 15346736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pd-Cu-M (M = Y, Ti, Zr, V, Nb, and Ni) Alloys for the Hydrogen Separation Membrane.
    Nayebossadri S; Speight JD; Book D
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2650-2661. PubMed ID: 27992165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.
    Tanaka H; Mori Y; Noro A; Kogure A; Kamimura M; Yamada N; Hanada S; Masahashi N; Itoi E
    PLoS One; 2016; 11(2):e0150081. PubMed ID: 26914329
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.