These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33557360)

  • 1. 3D Convolutional Neural Networks Initialized from Pretrained 2D Convolutional Neural Networks for Classification of Industrial Parts.
    Merino I; Azpiazu J; Remazeilles A; Sierra B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison.
    Anilkumar KK; Manoj VJ; Sagi TM
    Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation.
    Hassanzadeh T; Essam D; Sarker R
    IEEE Trans Med Imaging; 2021 Feb; 40(2):712-721. PubMed ID: 33141663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of convolutional neural networks for the classification of brain tumors using magnetic resonance imaging.
    Reyes D; Sánchez J
    Heliyon; 2024 Feb; 10(3):e25468. PubMed ID: 38352765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network.
    Alom MZ; Yakopcic C; Nasrin MS; Taha TM; Asari VK
    J Digit Imaging; 2019 Aug; 32(4):605-617. PubMed ID: 30756265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks.
    Cirillo MD; Mirdell R; Sjöberg F; Pham TD
    J Burn Care Res; 2019 Oct; 40(6):857-863. PubMed ID: 31187119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of CT brain images based on deep learning networks.
    Gao XW; Hui R; Tian Z
    Comput Methods Programs Biomed; 2017 Jan; 138():49-56. PubMed ID: 27886714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Neural Networks for Automatic Flower Species Localization and Recognition.
    Abbas T; Razzaq A; Zia MA; Mumtaz I; Saleem MA; Akbar W; Khan MA; Akhtar G; Shivachi CS
    Comput Intell Neurosci; 2022; 2022():9359353. PubMed ID: 35528372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Based Analysis of Histopathological Images of Breast Cancer.
    Xie J; Liu R; Luttrell J; Zhang C
    Front Genet; 2019; 10():80. PubMed ID: 30838023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks.
    Vakli P; Deák-Meszlényi RJ; Hermann P; Vidnyánszky Z
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30395218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFTSA-Net: Deep Feature Transfer-Based Stacked Autoencoder Network for DME Diagnosis.
    Atteia G; Abdel Samee N; Zohair Hassan H
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34681974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the performance evaluation of object classification models in low altitude aerial data.
    Mittal P; Sharma A; Singh R; Sangaiah AK
    J Supercomput; 2022; 78(12):14548-14570. PubMed ID: 35399758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer learning for classification of cardiovascular tissues in histological images.
    Mazo C; Bernal J; Trujillo M; Alegre E
    Comput Methods Programs Biomed; 2018 Oct; 165():69-76. PubMed ID: 30337082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolution-Based Encoding of Depth Images for Transfer Learning in RGB-D Scene Classification.
    Gopalapillai R; Gupta D; Zakariah M; Alotaibi YA
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrointestinal Tract Disease Classification from Wireless Endoscopy Images Using Pretrained Deep Learning Model.
    Yogapriya J; Chandran V; Sumithra MG; Anitha P; Jenopaul P; Suresh Gnana Dhas C
    Comput Math Methods Med; 2021; 2021():5940433. PubMed ID: 34545292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive comparison between vision transformers and convolutional neural networks for face recognition tasks.
    Rodrigo M; Cuevas C; García N
    Sci Rep; 2024 Sep; 14(1):21392. PubMed ID: 39271805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.