These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33557371)

  • 1. Cross-Feeding of a Toxic Metabolite in a Synthetic Lignocellulose-Degrading Microbial Community.
    Lee JA; Baugh AC; Shevalier NJ; Strand B; Stolyar S; Marx CJ
    Microorganisms; 2021 Feb; 9(2):. PubMed ID: 33557371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exometabolomic Analysis of Cross-Feeding Metabolites.
    Lubbe A; Bowen BP; Northen T
    Metabolites; 2017 Oct; 7(4):. PubMed ID: 28976938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial consortium composed of Cellulomonas ZJW-6 and Acinetobacter DA-25 improves straw lignocellulose degradation.
    Guan Y; Zhu H; Zhu Y; Zhao H; Shu L; Song J; Yang X; Wu Z; Wu L; Yang M
    Arch Microbiol; 2022 Jan; 204(2):139. PubMed ID: 35032191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formaldehyde-responsive proteins, TtmR and EfgA, reveal a tradeoff between formaldehyde resistance and efficient transition to methylotrophy in
    Bazurto JV; Bruger EL; Lee JA; Lambert LB; Marx CJ
    J Bacteriol; 2021 May; 203(9):. PubMed ID: 33619153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulomonas fimi secretomes: In vivo and in silico approaches for the lignocellulose bioconversion.
    Spertino S; Boatti L; Icardi S; Manfredi M; Cattaneo C; Marengo E; Cavaletto M
    J Biotechnol; 2018 Mar; 270():21-29. PubMed ID: 29409863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans.
    Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J
    Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers.
    Carlos C; Fan H; Currie CR
    Front Microbiol; 2018; 9():364. PubMed ID: 29545786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Effective Minimal Active Microbial Consortia for Lignocellulose Degradation.
    Puentes-Téllez PE; Falcao Salles J
    Microb Ecol; 2018 Aug; 76(2):419-429. PubMed ID: 29392382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation.
    Gilmore SP; Lankiewicz TS; Wilken SE; Brown JL; Sexton JA; Henske JK; Theodorou MK; Valentine DL; O'Malley MA
    ACS Synth Biol; 2019 Sep; 8(9):2174-2185. PubMed ID: 31461261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1.
    Yoon J; Bae J; Kang S; Cho BK; Oh MK
    Bioresour Technol; 2022 Jun; 353():127127. PubMed ID: 35398538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation.
    Barcoto MO; Rodrigues A
    Front Microbiol; 2022; 13():812143. PubMed ID: 35685924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of recombinant Yarrowia lipolytica and its application in bio-transformation of lignocellulose.
    Song HT; Yang YM; Liu DK; Xu XQ; Xiao WJ; Liu ZL; Xia WC; Wang CY; Yu X; Jiang ZB
    Bioengineered; 2017 Sep; 8(5):624-629. PubMed ID: 28282268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations.
    Lee JA; Riazi S; Nemati S; Bazurto JV; Vasdekis AE; Ridenhour BJ; Remien CH; Marx CJ
    PLoS Genet; 2019 Nov; 15(11):e1008458. PubMed ID: 31710603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
    Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM
    Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial fuel cells using Cellulomonas spp. with cellulose as fuel.
    Takeuchi Y; Khawdas W; Aso Y; Ohara H
    J Biosci Bioeng; 2017 Mar; 123(3):358-363. PubMed ID: 27818074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Transcriptional Response of
    Bazurto JV; Riazi S; D'Alton S; Deatherage DE; Bruger EL; Barrick JE; Marx CJ
    Microorganisms; 2021 Feb; 9(2):. PubMed ID: 33578755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion.
    Lin L
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):14. PubMed ID: 35418100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.
    Cortes-Tolalpa L; Norder J; van Elsas JD; Falcao Salles J
    Appl Microbiol Biotechnol; 2018 Mar; 102(6):2913-2927. PubMed ID: 29397428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds.
    Chen X; Li Z; Zhang X; Hu F; Ryu DD; Bao J
    Appl Biochem Biotechnol; 2009 Dec; 159(3):591-604. PubMed ID: 19156369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive laboratory evolution boosts Yarrowia lipolytica tolerance to vanillic acid.
    Sha Y; Zhou L; Wang Z; Ding Y; Lu M; Xu Z; Zhai R; Jin M
    J Biotechnol; 2023 Apr; 367():42-52. PubMed ID: 36965629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.