These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33557534)

  • 1. Impact of the degree of dehydrogenation in ethanol C-C bond cleavage on Ir(100).
    Wu R; Wiegand KR; Wang L
    J Chem Phys; 2021 Feb; 154(5):054705. PubMed ID: 33557534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights and Activation Energy Surface of the Dehydrogenation of C
    Wu R; Wang L
    Chemphyschem; 2022 Jun; 23(12):e202200132. PubMed ID: 35446461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the solvent effects on ethanol oxidation on Ir(100).
    Wu R; Wang L
    Phys Chem Chem Phys; 2023 Jan; 25(3):2190-2202. PubMed ID: 36594349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive C-C and C-H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment.
    Wu Z; Zhang M; Jiang H; Zhong CJ; Chen Y; Wang L
    Phys Chem Chem Phys; 2017 Jun; 19(23):15444-15453. PubMed ID: 28580983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding deep dehydrogenation and cracking of n-butane on Ni(111) by a DFT study.
    Wu C; Wang L; Xiao Z; Li G; Wang L
    Phys Chem Chem Phys; 2020 Jan; 22(2):724-733. PubMed ID: 31830156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu
    Xu H; Miao B; Zhang M; Chen Y; Wang L
    Phys Chem Chem Phys; 2017 Oct; 19(38):26210-26220. PubMed ID: 28932852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts.
    Alcala R; Shabaker JW; Huber GW; Sanchez-Castillo MA; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(6):2074-85. PubMed ID: 16851198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of (PCP)Ir-catalyzed acceptorless dehydrogenation of alkanes: a combined computational and experimental study.
    Krogh-Jespersen K; Czerw M; Summa N; Renkema KB; Achord PD; Goldman AS
    J Am Chem Soc; 2002 Sep; 124(38):11404-16. PubMed ID: 12236755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction.
    Du W; Wang Q; Saxner D; Deskins NA; Su D; Krzanowski JE; Frenkel AI; Teng X
    J Am Chem Soc; 2011 Sep; 133(38):15172-83. PubMed ID: 21812458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Penta-Twinned Rhodium Nanobranches as Superior Catalysts for Ethanol Electro-oxidation.
    Zhang J; Ye J; Fan Q; Jiang Y; Zhu Y; Li H; Cao Z; Kuang Q; Cheng J; Zheng J; Xie Z
    J Am Chem Soc; 2018 Sep; 140(36):11232-11240. PubMed ID: 30117323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Phosphorus-Doped Ag@Pd Catalyst for Enhanced CC Bond Cleavage during Ethanol Electrooxidation.
    Yang X; Liang Z; Chen S; Ma M; Wang Q; Tong X; Zhang Q; Ye J; Gu L; Yang N
    Small; 2020 Nov; 16(47):e2004727. PubMed ID: 33136339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT/ECP study of C-H activation by (PCP)Ir and (PCP)Ir(H)2(PCP=eta3-1,3-C6H3(CH2PR2)2). Enthalpies and free energies of associative and dissociative pathways.
    Krogh-Jespersen K; Czerw M; Kanzelberger M; Goldman AS
    J Chem Inf Comput Sci; 2001; 41(1):56-63. PubMed ID: 11206383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pt-Based Catalysts for Electrochemical Oxidation of Ethanol.
    Marinkovic NS; Li M; Adzic RR
    Top Curr Chem (Cham); 2019 Apr; 377(3):11. PubMed ID: 30949779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-phase transuranium chemistry: reactions of actinide ions with alcohols and thiols.
    Gibson JK
    J Mass Spectrom; 1999 Nov; 34(11):1166-77. PubMed ID: 10548810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-Bridged Long-Range Dual Sites Boost Ethanol Electrooxidation by Facilitating C-C Bond Cleavage.
    Wang Y; Zheng M; Li Y; Chen J; Ye J; Ye C; Li S; Wang J; Zhu Y; Sun SG; Wang D
    Nano Lett; 2023 Sep; 23(17):8194-8202. PubMed ID: 37624651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoP/RGO-Pd Hybrids with Heterointerfaces as Highly Active Catalysts for Ethanol Electrooxidation.
    Wang M; Ding R; Xiao Y; Wang H; Wang L; Chen CM; Mu Y; Wu GP; Lv B
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28903-28914. PubMed ID: 32470287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.