These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33557535)

  • 1. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory.
    Nandi A; Qu C; Houston PL; Conte R; Bowman JM
    J Chem Phys; 2021 Feb; 154(5):051102. PubMed ID: 33557535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points.
    Nandi A; Qu C; Bowman JM
    J Chem Phys; 2019 Aug; 151(8):084306. PubMed ID: 31470729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the accuracy of explicitly correlated methods to generate potential energy surfaces for scattering calculations and clustering: application to the HCl-He complex.
    Ajili Y; Hammami K; Jaidane NE; Lanza M; Kalugina YN; Lique F; Hochlaf M
    Phys Chem Chem Phys; 2013 Jul; 15(25):10062-70. PubMed ID: 23443908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Reaction Barriers and Thermochemical Properties with Explicitly Correlated Coupled-Cluster Methods: A Basis Set Assessment.
    Zhang J; Valeev EF
    J Chem Theory Comput; 2012 Sep; 8(9):3175-86. PubMed ID: 26605729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.
    Mackie ID; DiLabio GA
    J Chem Phys; 2011 Oct; 135(13):134318. PubMed ID: 21992316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies.
    Feller D; Peterson KA
    J Chem Phys; 2013 Aug; 139(8):084110. PubMed ID: 24006977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne-C2H2 system.
    Li J; Guo H
    J Chem Phys; 2015 Dec; 143(21):214304. PubMed ID: 26646879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the choice of the ab initio level of theory for potential energy surface developments.
    Czakó G; Szabó I; Telekes H
    J Phys Chem A; 2014 Jan; 118(3):646-54. PubMed ID: 24377787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide.
    Qu C; Bowman JM
    J Chem Phys; 2019 Apr; 150(14):141101. PubMed ID: 30981221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving "Silver-Standard" Benchmark Interaction Energies with Bond Functions.
    Dutta NN; Patkowski K
    J Chem Theory Comput; 2018 Jun; 14(6):3053-3070. PubMed ID: 29772176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural network based Δ-machine learning approach efficiently brings the DFT potential energy surface to the CCSD(T) quality: a case for the OH + CH
    Song K; Li J
    Phys Chem Chem Phys; 2023 Apr; 25(16):11192-11204. PubMed ID: 37039505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-dimensional, ab initio potential energy surface for glycine with characterization of stationary points and zero-point energy calculations by means of diffusion Monte Carlo and semiclassical dynamics.
    Conte R; Houston PL; Qu C; Li J; Bowman JM
    J Chem Phys; 2020 Dec; 153(24):244301. PubMed ID: 33380113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate Potential Energy Surfaces Using Atom-Centered Potentials and Minimal High-Level Data.
    Ashani MN; Huang Q; Flowers AM; Brown A; Aerts A; Otero-de-la-Roza A; DiLabio GA
    J Phys Chem A; 2023 Sep; 127(38):8015-8024. PubMed ID: 37712536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ground state potential energy surface for HONO based on a neural network with exponential fitting functions.
    Pradhan E; Brown A
    Phys Chem Chem Phys; 2017 Aug; 19(33):22272-22281. PubMed ID: 28805229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
    Sylvetsky N; Peterson KA; Karton A; Martin JM
    J Chem Phys; 2016 Jun; 144(21):214101. PubMed ID: 27276939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets.
    Hill JG; Peterson KA; Knizia G; Werner HJ
    J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory.
    Warden CE; Smith DGA; Burns LA; Bozkaya U; Sherrill CD
    J Chem Phys; 2020 Mar; 152(12):124109. PubMed ID: 32241148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical calculations of the Cl- + CH3I --> CH3Cl + I- potential energy surface.
    Zhang J; Lourderaj U; Addepalli SV; de Jong WA; Hase WL
    J Phys Chem A; 2009 Mar; 113(10):1976-84. PubMed ID: 19115824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.