These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33557603)

  • 1. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling.
    Schmidt I; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(11):1274-1285. PubMed ID: 33557603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cancellous bone material and dead zone on stress-strain, bone stimulus and bone remodelling around the tibia for total ankle replacement.
    Mondal S; Ghosh R
    Proc Inst Mech Eng H; 2021 Feb; 235(2):185-196. PubMed ID: 33140692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone.
    Pérez MA; Fornells P; Doblaré M; García-Aznar JM
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):71-80. PubMed ID: 19697182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel micromorphic approach captures non-locality in continuum bone remodelling.
    Titlbach A; Papastavrou A; McBride A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):1042-1055. PubMed ID: 37318076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Modulation of Cancellous and Cortical Distal Femur by Fructose and Natural Mineral-Rich Water Consumption in Ovariectomized Female Sprague Dawley Rats.
    Pereira C; Guede D; Durães C; Brandão I; Silva N; Passos E; Bernardes M; Monteiro R; Martins MJ
    Nutrients; 2019 Sep; 11(10):. PubMed ID: 31574967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement.
    Doblaré M; García JM
    J Biomech; 2001 Sep; 34(9):1157-70. PubMed ID: 11506786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of bone remodelling with piezoelectric effects using an open-source framework.
    Bansod YD; Kebbach M; Kluess D; Bader R; van Rienen U
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1147-1166. PubMed ID: 33740158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative CT with finite element analysis: towards a predictive tool for bone remodelling around an uncemented tapered stem.
    Shim VB; Pitto RP; Anderson IA
    Int Orthop; 2012 Jul; 36(7):1363-9. PubMed ID: 22527334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A peridynamic formulation for nonlocal bone remodelling.
    Schaller E; Javili A; Schmidt I; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2022 Dec; 25(16):1835-1851. PubMed ID: 35435781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone fracture healing within a continuum bone remodelling framework.
    Schmidt I; Albert J; Ritthaler M; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2022 Jul; 25(9):1040-1050. PubMed ID: 34730042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of failure in cancellous bone using extended finite element method.
    Salem M; Westover L; Adeeb S; Duke K
    Proc Inst Mech Eng H; 2020 Sep; 234(9):988-999. PubMed ID: 32605523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur.
    Schileo E; Pitocchi J; Falcinelli C; Taddei F
    Bone; 2020 Jul; 136():115348. PubMed ID: 32240847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of charge density on the velocity and attenuation of ultrasound waves in human cancellous bone.
    Yoon YJ
    J Biomech; 2018 Oct; 79():54-57. PubMed ID: 30122518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone remodelling in implanted proximal femur using topology optimization and parameterized cellular model.
    Mathai B; Dhara S; Gupta S
    J Mech Behav Biomed Mater; 2022 Jan; 125():104903. PubMed ID: 34717117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse.
    Yang H; Xu X; Bullock W; Main RP
    J Biomech; 2019 May; 89():85-94. PubMed ID: 31047696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations.
    Villette CC; Phillips ATM
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2077-2091. PubMed ID: 28795282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.