BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33557749)

  • 1. In silico drug repositioning based on the integration of chemical, genomic and pharmacological spaces.
    Chen H; Zhang Z; Zhang J
    BMC Bioinformatics; 2021 Feb; 22(1):52. PubMed ID: 33557749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico drug repositioning based on integrated drug targets and canonical correlation analysis.
    Chen H; Zhang Z; Zhang J
    BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BGMSDDA: a bipartite graph diffusion algorithm with multiple similarity integration for drug-disease association prediction.
    Xie G; Li J; Gu G; Sun Y; Lin Z; Zhu Y; Wang W
    Mol Omics; 2021 Dec; 17(6):997-1011. PubMed ID: 34610633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data.
    Yang F; Xu J; Zeng J
    Pac Symp Biocomput; 2014; ():148-59. PubMed ID: 24297542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity.
    Lei S; Lei X; Chen M; Pan Y
    Interdiscip Sci; 2024 Mar; 16(1):160-175. PubMed ID: 38103130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico drug repositioning using deep learning and comprehensive similarity measures.
    Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DDAPRED: a computational method for predicting drug repositioning using regularized logistic matrix factorization.
    Wang X; Yan R
    J Mol Model; 2020 Feb; 26(3):60. PubMed ID: 32062701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction.
    Kitsiranuwat S; Suratanee A; Plaimas K
    Sci Prog; 2022; 105(3):368504221109215. PubMed ID: 35801312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational drug repositioning using meta-path-based semantic network analysis.
    Tian Z; Teng Z; Cheng S; Guo M
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures.
    Yan C; Feng L; Wang W; Wang J; Zhang G; Luo J
    Curr Mol Med; 2020; 20(6):442-451. PubMed ID: 31729291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning.
    Kim Y; Jung YS; Park JH; Kim SJ; Cho YR
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.
    Wu G; Liu J; Wang C
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network-based inference methods for drug repositioning.
    Chen H; Zhang H; Zhang Z; Cao Y; Tang W
    Comput Math Methods Med; 2015; 2015():130620. PubMed ID: 25969690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DrugNet: network-based drug-disease prioritization by integrating heterogeneous data.
    Martínez V; Navarro C; Cano C; Fajardo W; Blanco A
    Artif Intell Med; 2015 Jan; 63(1):41-9. PubMed ID: 25704113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.