These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33558367)

  • 1. Auxin-Regulated Lateral Root Organogenesis.
    Cavallari N; Artner C; Benkova E
    Cold Spring Harb Perspect Biol; 2021 Jul; 13(7):. PubMed ID: 33558367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin and Target of Rapamycin Spatiotemporally Regulate Root Organogenesis.
    Xie X; Wang Y; Datla R; Ren M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal mechanisms of root branching.
    Ötvös K; Benková E
    Curr Opin Genet Dev; 2017 Aug; 45():82-89. PubMed ID: 28391060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral root formation and the multiple roles of auxin.
    Du Y; Scheres B
    J Exp Bot; 2018 Jan; 69(2):155-167. PubMed ID: 28992266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature and regulation of the root clock.
    Xuan W; De Gernier H; Beeckman T
    Development; 2020 Feb; 147(3):. PubMed ID: 32014866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin and the integration of environmental signals into plant root development.
    Kazan K
    Ann Bot; 2013 Dec; 112(9):1655-65. PubMed ID: 24136877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth.
    Marin E; Jouannet V; Herz A; Lokerse AS; Weijers D; Vaucheret H; Nussaume L; Crespi MD; Maizel A
    Plant Cell; 2010 Apr; 22(4):1104-17. PubMed ID: 20363771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Transcript Profiling Reveals an Auxin-Responsive Transcription Factor, OsAP2/ERF-40, Promoting Rice Adventitious Root Development.
    Neogy A; Garg T; Kumar A; Dwivedi AK; Singh H; Singh U; Singh Z; Prasad K; Jain M; Yadav SR
    Plant Cell Physiol; 2019 Oct; 60(10):2343-2355. PubMed ID: 31318417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components.
    Singh S; Singh A; Yadav S; Gautam V; Singh A; Sarkar AK
    Sci Rep; 2017 Feb; 7():42450. PubMed ID: 28195159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WEG1, which encodes a cell wall hydroxyproline-rich glycoprotein, is essential for parental root elongation controlling lateral root formation in rice.
    Lucob-Agustin N; Kawai T; Takahashi-Nosaka M; Kano-Nakata M; Wainaina CM; Hasegawa T; Inari-Ikeda M; Sato M; Tsuji H; Yamauchi A; Inukai Y
    Physiol Plant; 2020 Jun; 169(2):214-227. PubMed ID: 31925781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auxin Controlled by Ethylene Steers Root Development.
    Qin H; Huang R
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous auxin biosynthesis and de novo root organogenesis.
    Sang YL; Cheng ZJ; Zhang XS
    J Exp Bot; 2016 Jul; 67(14):4011-3. PubMed ID: 27402616
    [No Abstract]   [Full Text] [Related]  

  • 13. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.
    Bharti N; Bhatla SC
    Plant Signal Behav; 2015; 10(8):e1054087. PubMed ID: 26076049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral root development in Arabidopsis: fifty shades of auxin.
    Lavenus J; Goh T; Roberts I; Guyomarc'h S; Lucas M; De Smet I; Fukaki H; Beeckman T; Bennett M; Laplaze L
    Trends Plant Sci; 2013 Aug; 18(8):450-8. PubMed ID: 23701908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis.
    Sun CH; Yu JQ; Wen LZ; Guo YH; Sun X; Hao YJ; Hu DG; Zheng CS
    Plant Sci; 2018 Jan; 266():27-36. PubMed ID: 29241564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis.
    Marhavý P; Duclercq J; Weller B; Feraru E; Bielach A; Offringa R; Friml J; Schwechheimer C; Murphy A; Benková E
    Curr Biol; 2014 May; 24(9):1031-7. PubMed ID: 24768050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The
    Rogato A; Valkov VT; Nadzieja M; Stougaard J; Chiurazzi M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis.
    De Smet I; Signora L; Beeckman T; Inzé D; Foyer CH; Zhang H
    Plant J; 2003 Feb; 33(3):543-55. PubMed ID: 12581312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin-mediated lateral root formation in higher plants.
    Fukaki H; Okushima Y; Tasaka M
    Int Rev Cytol; 2007; 256():111-37. PubMed ID: 17241906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral root organogenesis - from cell to organ.
    Benková E; Bielach A
    Curr Opin Plant Biol; 2010 Dec; 13(6):677-83. PubMed ID: 20934368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.