BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33558504)

  • 1. Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study.
    Emad A; Sinha S
    NPJ Syst Biol Appl; 2021 Feb; 7(1):9. PubMed ID: 33558504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring transcription factor collaborations in gene regulatory networks.
    Awad S; Chen J
    BMC Syst Biol; 2014; 8 Suppl 1(Suppl 1):S1. PubMed ID: 24565025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences.
    Langer BE; Hiller M
    Nucleic Acids Res; 2019 Feb; 47(4):e19. PubMed ID: 30496469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical Programming for Modeling Expression of a Gene Using Gurobi Optimizer to Identify Its Transcriptional Regulators.
    Muley VY
    Methods Mol Biol; 2021; 2328():99-113. PubMed ID: 34251621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative method to decode regulatory logics in gene transcription.
    Yan B; Guan D; Wang C; Wang J; He B; Qin J; Boheler KR; Lu A; Zhang G; Zhu H
    Nat Commun; 2017 Oct; 8(1):1044. PubMed ID: 29051499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators.
    Farahmand S; O'Connor C; Macoska JA; Zarringhalam K
    Nucleic Acids Res; 2019 Dec; 47(22):11563-11573. PubMed ID: 31701125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cis-regulatory atlas in maize at single-cell resolution.
    Marand AP; Chen Z; Gallavotti A; Schmitz RJ
    Cell; 2021 May; 184(11):3041-3055.e21. PubMed ID: 33964211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical identification of gene association by CID in application of constructing ER regulatory network.
    Liu LY; Chen CY; Chen MJ; Tsai MS; Lee CH; Phang TL; Chang LY; Kuo WH; Hwa HL; Lien HC; Jung SM; Lin YS; Chang KJ; Hsieh FJ
    BMC Bioinformatics; 2009 Mar; 10():85. PubMed ID: 19292896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depicting the genetic architecture of pediatric cancers through an integrative gene network approach.
    Savary C; Kim A; Lespagnol A; Gandemer V; Pellier I; Andrieu C; Pagès G; Galibert MD; Blum Y; de Tayrac M
    Sci Rep; 2020 Jan; 10(1):1224. PubMed ID: 31988326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks.
    Siahpirani AF; Chasman D; Roy S
    Methods Mol Biol; 2019; 1883():161-194. PubMed ID: 30547400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression Networks in Predicting Transcriptional Gene Regulation.
    AbuQamar SF; El-Tarabily KA; Sham A
    Methods Mol Biol; 2021; 2328():1-11. PubMed ID: 34251616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.
    Janky R; Verfaillie A; Imrichová H; Van de Sande B; Standaert L; Christiaens V; Hulselmans G; Herten K; Naval Sanchez M; Potier D; Svetlichnyy D; Kalender Atak Z; Fiers M; Marine JC; Aerts S
    PLoS Comput Biol; 2014 Jul; 10(7):e1003731. PubMed ID: 25058159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning Differential Module Networks Across Multiple Experimental Conditions.
    Erola P; Bonnet E; Michoel T
    Methods Mol Biol; 2019; 1883():303-321. PubMed ID: 30547406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription.
    Sanguinetti G; Rattray M; Lawrence ND
    Bioinformatics; 2006 Jul; 22(14):1753-9. PubMed ID: 16632490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.
    Chandrasekaran S; Price ND
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17845-50. PubMed ID: 20876091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding transcriptional regulatory networks using computational models.
    He B; Tan K
    Curr Opin Genet Dev; 2016 Apr; 37():101-108. PubMed ID: 26950762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.