These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 33558506)

  • 1. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies.
    Kaur T; Raju M; Alshareedah I; Davis RB; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Feb; 12(1):872. PubMed ID: 33558506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotypic electrostatic interactions control complex phase separation of tau and prion into multiphasic condensates and co-aggregates.
    Rai SK; Khanna R; Avni A; Mukhopadhyay S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2216338120. PubMed ID: 36595668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Low-complexity Regions of SFPQ Play Distinct Roles in the Formation of Biomolecular Condensates.
    Marshall AC; Cummins J; Kobelke S; Zhu T; Widagdo J; Anggono V; Hyman A; Fox AH; Bond CS; Lee M
    J Mol Biol; 2023 Dec; 435(24):168364. PubMed ID: 37952770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic and arginine content drives multiphasic condensation of protein-RNA mixtures.
    Chew PY; Joseph JA; Collepardo-Guevara R; Reinhardt A
    Biophys J; 2024 Jun; 123(11):1342-1355. PubMed ID: 37408305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    Nat Commun; 2023 Sep; 14(1):5527. PubMed ID: 37684240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Pappu R; Farag M; Borcherds W; Bremer A; Mittag T
    Res Sq; 2023 May; ():. PubMed ID: 37205474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomolecular Condensates Can Enhance Pathological RNA Clustering.
    Mahendran TS; Wadsworth GM; Singh A; Banerjee PR
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular condensates can enhance pathological RNA clustering.
    Banerjee P; Mahendran TS; Wadsworth G; Singh A
    Res Sq; 2024 Jul; ():. PubMed ID: 39070659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly.
    Chen X; Mayr C
    RNA; 2022 Jan; 28(1):76-87. PubMed ID: 34706978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates.
    Gasior K; Zhao J; McLaughlin G; Forest MG; Gladfelter AS; Newby J
    Phys Rev E; 2019 Jan; 99(1-1):012411. PubMed ID: 30780260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    PLoS Comput Biol; 2022 Feb; 18(2):e1009810. PubMed ID: 35108264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying viscosity and surface tension of multicomponent protein-nucleic acid condensates.
    Alshareedah I; Thurston GM; Banerjee PR
    Biophys J; 2021 Apr; 120(7):1161-1169. PubMed ID: 33453268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'RNA modulation of transport properties and stability in phase-separated condensates.
    Tejedor AR; Garaizar A; Ramírez J; Espinosa JR
    Biophys J; 2021 Dec; 120(23):5169-5186. PubMed ID: 34762868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.