BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33558533)

  • 1. Effects of individual base-pairs on in vivo target search and destruction kinetics of bacterial small RNA.
    Poddar A; Azam MS; Kayikcioglu T; Bobrovskyy M; Zhang J; Ma X; Labhsetwar P; Fei J; Singh D; Luthey-Schulten Z; Vanderpool CK; Ha T
    Nat Commun; 2021 Feb; 12(1):874. PubMed ID: 33558533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq.
    Kawamoto H; Koide Y; Morita T; Aiba H
    Mol Microbiol; 2006 Aug; 61(4):1013-22. PubMed ID: 16859494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide.
    Wadler CS; Vanderpool CK
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20454-9. PubMed ID: 18042713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets.
    Zhang A; Schu DJ; Tjaden BC; Storz G; Gottesman S
    J Mol Biol; 2013 Oct; 425(19):3678-97. PubMed ID: 23318956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimal base-pairing region of a bacterial small RNA SgrS required for translational repression of ptsG mRNA.
    Maki K; Morita T; Otaka H; Aiba H
    Mol Microbiol; 2010 May; 76(3):782-92. PubMed ID: 20345651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments.
    Cameron TA; Matz LM; Sinha D; De Lay NR
    Nucleic Acids Res; 2019 Sep; 47(16):8821-8837. PubMed ID: 31329973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair.
    Papenfort K; Podkaminski D; Hinton JC; Vogel J
    Proc Natl Acad Sci U S A; 2012 Mar; 109(13):E757-64. PubMed ID: 22383560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing.
    Małecka EM; Woodson SA
    Mol Cell; 2021 May; 81(9):1988-1999.e4. PubMed ID: 33705712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange.
    Panja S; Schu DJ; Woodson SA
    Nucleic Acids Res; 2013 Aug; 41(15):7536-46. PubMed ID: 23771143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA.
    Maki K; Uno K; Morita T; Aiba H
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10332-7. PubMed ID: 18650387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA.
    Fei J; Singh D; Zhang Q; Park S; Balasubramanian D; Golding I; Vanderpool CK; Ha T
    Science; 2015 Mar; 347(6228):1371-4. PubMed ID: 25792329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.
    Santiago-Frangos A; Kavita K; Schu DJ; Gottesman S; Woodson SA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6089-E6096. PubMed ID: 27681631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of Escherichia coli Hfq mutations on RNA binding and sRNA•mRNA duplex formation in rpoS riboregulation.
    Updegrove TB; Wartell RM
    Biochim Biophys Acta; 2011 Oct; 1809(10):532-40. PubMed ID: 21889623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycling of RNAs on Hfq.
    Wagner EG
    RNA Biol; 2013 Apr; 10(4):619-26. PubMed ID: 23466677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchy in Hfq Chaperon Occupancy of Small RNA Targets Plays a Major Role in Their Regulation.
    Faigenbaum-Romm R; Reich A; Gatt YE; Barsheshet M; Argaman L; Margalit H
    Cell Rep; 2020 Mar; 30(9):3127-3138.e6. PubMed ID: 32130912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation.
    Iosub IA; van Nues RW; McKellar SW; Nieken KJ; Marchioretto M; Sy B; Tree JJ; Viero G; Granneman S
    Elife; 2020 May; 9():. PubMed ID: 32356726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple in vivo roles for the C-terminal domain of the RNA chaperone Hfq.
    Kavita K; Zhang A; Tai CH; Majdalani N; Storz G; Gottesman S
    Nucleic Acids Res; 2022 Feb; 50(3):1718-1733. PubMed ID: 35104863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.