These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33558552)

  • 1. Electro-Quasistatic Animal Body Communication for Untethered Rodent Biopotential Recording.
    Sriram S; Avlani S; Ward MP; Sen S
    Sci Rep; 2021 Feb; 11(1):3307. PubMed ID: 33558552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Covert Body Area Network using Electro-Quasistatic Human Body Communication.
    Das D; Maity S; Chatterjee B; Sen S
    Sci Rep; 2019 Mar; 9(1):4160. PubMed ID: 30858385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-performance 8 nV/√Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals.
    Petkos K; Koutsoftidis S; Guiho T; Degenaar P; Jackson A; Greenwald SE; Brown P; Denison T; Drakakis EM
    J Neuroeng Rehabil; 2019 Dec; 16(1):156. PubMed ID: 31823804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rodent wearable ultrasound system for wireless neural recording.
    Piech DK; Kay JE; Boser BE; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():221-225. PubMed ID: 29059850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication.
    Maity S; He M; Nath M; Das D; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1791-1802. PubMed ID: 30403618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring.
    Rapin M; Proença M; Braun F; Meier C; Solà J; Ferrario D; Grossenbacher O; Porchet JA; Chételat O
    Physiol Meas; 2015 Apr; 36(4):767-83. PubMed ID: 25798790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-the-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC With Miniaturized Wearables.
    Yang D; Mehrotra P; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2858-2869. PubMed ID: 34010125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Wireless Sensors for Wearable Electronics.
    Park YG; Lee S; Park JU
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Wire Bus Combining Full Duplex Body-Sensor Network and Multilead Biopotential Measurements.
    Rapin M; Wacker J; Chetelat O
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):113-122. PubMed ID: 28436841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Analysis of AM and FM Interference Robustness of Integrating DDR Receiver for Human Body Communication.
    Maity S; Jiang X; Sen S
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):566-578. PubMed ID: 30990439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable health monitoring using capacitive voltage-mode Human Body Communication.
    Maity S; Das D; Sen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1-4. PubMed ID: 29059795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role and Challenges of Body Channel Communication in Wearable Flexible Electronics.
    Zhao B; Mao J; Zhao J; Yang H; Lian Y
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):283-296. PubMed ID: 31940549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training-free compressed sensing for wireless neural recording using analysis model and group weighted [Formula: see text]-minimization.
    Sun B; Zhao W; Zhu X
    J Neural Eng; 2017 Jun; 14(3):036018. PubMed ID: 28240216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SeisMote: A Multi-Sensor Wireless Platform for Cardiovascular Monitoring in Laboratory, Daily Life, and Telemedicine.
    Di Rienzo M; Rizzo G; Işılay ZM; Lombardi P
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of a Wearable Wireless ECG Monitoring System with Ultra-low Power Consumption].
    Sun Z; Ye J; Zhang X; Yuan M; Zhong Z; Tan X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Jan; 44(1):28-32. PubMed ID: 32343062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traffic Priority Based Channel Assignment Technique for Critical Data Transmission in Wireless Body Area Network.
    Ambigavathi M; Sridharan D
    J Med Syst; 2018 Sep; 42(11):206. PubMed ID: 30238165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Implementation of Low Power High-Efficient Transceiver for Body Channel Communications.
    Vijayalakshmi S; Nagarajan V
    J Med Syst; 2019 Feb; 43(4):81. PubMed ID: 30788605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncontact Wearable Wireless ECG Systems for Long-Term Monitoring.
    Majumder S; Chen L; Marinov O; Chen CH; Mondal T; Deen MJ
    IEEE Rev Biomed Eng; 2018; 11():306-321. PubMed ID: 29993585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.