These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33558552)

  • 21. A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed.
    Lee S; Kim SR; Jeon KH; Jeon JW; Lee EI; Jeon J; Oh JH; Yoo JH; Kil HJ; Park JW
    Sci Rep; 2023 Apr; 13(1):5773. PubMed ID: 37031263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring.
    Saha T; Songkakul T; Knisely CT; Yokus MA; Daniele MA; Dickey MD; Bozkurt A; Velev OD
    ACS Sens; 2022 Jul; 7(7):2037-2048. PubMed ID: 35820167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust Biopotential Acquisition via a Distributed Multi-Channel FM-ADC.
    Warchall J; Theilmann P; Ouyang Y; Garudadri H; Mercier PP
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1229-1242. PubMed ID: 31562103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-low-power wearable biopotential sensor nodes.
    Yazicioglu RF; Torfs T; Penders J; Romero I; Kim H; Merken P; Gyselinckx B; Yoo HJ; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3205-8. PubMed ID: 19964056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inter-body coupling in electro-quasistatic human body communication: theory and analysis of security and interference properties.
    Nath M; Maity S; Avlani S; Weigand S; Sen S
    Sci Rep; 2021 Feb; 11(1):4378. PubMed ID: 33623092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Software-Defined Radio Receiver for Wireless Recording From Freely Behaving Animals.
    Jia Y; Lee B; Kong F; Zeng Z; Connolly M; Mahmoudi B; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1645-1654. PubMed ID: 31647447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Wireless Fully-Passive Acquisition of Biopotentials.
    Liu S; Meng X; Zhang J; Chae J
    Methods Mol Biol; 2022; 2393():841-861. PubMed ID: 34837215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous Biopotential Monitoring via Carbon Nanotubes Paper Composites (CPC) for Sustainable Health Analysis.
    Ban S; Lee CW; Sakthivelpathi V; Chung JH; Kim JH
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 60Mb/s -64dBm Body Channel Communication Transceiver Utilizing Manchester Code.
    Wang X; Chen P; Han C; Zhang Z; Mao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review.
    Vidhya CM; Maithani Y; Singh JP
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Wearable Multimodal Wireless Sensing System for Respiratory Monitoring and Analysis.
    Moon KS; Lee SQ
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biopotential fiber sensor.
    Lobodzinski SM; Laks MM
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S41-6. PubMed ID: 17015067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges.
    Čuljak I; Lučev Vasić Ž; Mihaldinec H; Džapo H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Path Loss Models for In-Body Communications Within 2.36-2.5 GHz.
    Chávez-Santiago R; Garcia-Pardo C; Fornes-Leal A; Vallés-Lluch A; Vermeeren G; Joseph W; Balasingham I; Cardona N
    IEEE J Biomed Health Inform; 2015 May; 19(3):930-7. PubMed ID: 25838532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioelectronic Sensor Nodes for the Internet of Bodies.
    Chatterjee B; Mohseni P; Sen S
    Annu Rev Biomed Eng; 2023 Jun; 25():101-129. PubMed ID: 36913705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage.
    Chang Y; Jang J; Cho J; Lee J; Son Y; Park S; Kim C
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):714-725. PubMed ID: 35976817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A High-Resolution Wireless Power Transfer and Data Communication System for Studying Gastric Slow Waves.
    Javan-Khoshkholgh A; Alrofati W; Miller LS; Vegesna A; Kiani M; Farajidavar A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3271-3274. PubMed ID: 31946582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.
    Chang SI; Park SY; Yoon E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchronization and communication of cooperative sensors.
    Chételat O; Rapin M; Meier C; Bischof A; Augustyniak MK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3129-32. PubMed ID: 26736955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.