These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33559039)

  • 21. Imaging-based musculoskeletal models alter muscle and joint contact forces but do not improve the agreement with experimentally measured electromyography signals in children with cerebral palsy.
    Kainz H; Jonkers I
    Gait Posture; 2023 Feb; 100():91-95. PubMed ID: 36502666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of lower limb EMG and ground reaction forces between barefoot and shod gait in participants with diabetic neuropathic and healthy controls.
    Sacco IC; Akashi PM; Hennig EM
    BMC Musculoskelet Disord; 2010 Feb; 11():24. PubMed ID: 20128894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of muscle activation during different walking speeds with two mathematical approaches compared to surface EMG.
    Trinler U; Leboeuf F; Hollands K; Jones R; Baker R
    Gait Posture; 2018 Jul; 64():266-273. PubMed ID: 29966908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of lower limb muscle strength between diabetic neuropathic and healthy subjects using OpenSim.
    Scarton A; Jonkers I; Guiotto A; Spolaor F; Guarneri G; Avogaro A; Cobelli C; Sawacha Z
    Gait Posture; 2017 Oct; 58():194-200. PubMed ID: 28802220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of musculotendon geometry variability in muscle forces and hip bone-on-bone forces during walking.
    Martín-Sosa E; Martínez-Reina J; Mayo J; Ojeda J
    PLoS One; 2019; 14(9):e0222491. PubMed ID: 31553756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-induced changes in the lower limb muscle activities during uphill walking at steep grades.
    Kwee-Meier ST; Mertens A; Jeschke S
    Gait Posture; 2018 May; 62():490-496. PubMed ID: 29677664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A; Afschrift M; De Schutter J; Jonkers I; De Groote F
    Gait Posture; 2019 Oct; 74():223-230. PubMed ID: 31563823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An open source lower limb model: Hip joint validation.
    Modenese L; Phillips AT; Bull AM
    J Biomech; 2011 Aug; 44(12):2185-93. PubMed ID: 21742331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting muscle forces during the propulsion phase of single leg triple hop test.
    Alvim FC; Lucareli PRG; Menegaldo LL
    Gait Posture; 2018 Jan; 59():298-303. PubMed ID: 28734700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim.
    Trinler U; Schwameder H; Baker R; Alexander N
    J Biomech; 2019 Mar; 86():55-63. PubMed ID: 30739769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tibiofemoral contact forces during walking, running and sidestepping.
    Saxby DJ; Modenese L; Bryant AL; Gerus P; Killen B; Fortin K; Wrigley TV; Bennell KL; Cicuttini FM; Lloyd DG
    Gait Posture; 2016 Sep; 49():78-85. PubMed ID: 27391249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generic scaled versus subject-specific models for the calculation of musculoskeletal loading in cerebral palsy gait: Effect of personalized musculoskeletal geometry outweighs the effect of personalized neural control.
    Kainz H; Wesseling M; Jonkers I
    Clin Biomech (Bristol, Avon); 2021 Jul; 87():105402. PubMed ID: 34098149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trunk-pelvis motion, joint loads, and muscle forces during walking with a transtibial amputation.
    Yoder AJ; Petrella AJ; Silverman AK
    Gait Posture; 2015 Mar; 41(3):757-62. PubMed ID: 25748611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling.
    Lerner ZF; Haight DJ; DeMers MS; Board WJ; Browning RC
    J Appl Biomech; 2014 Apr; 30(2):197-205. PubMed ID: 23878264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motor programmes for the termination of gait in humans: organisation and velocity-dependent adaptation.
    Crenna P; Cuong DM; Brénière Y
    J Physiol; 2001 Dec; 537(Pt 3):1059-72. PubMed ID: 11744777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-level personalization of neuromusculoskeletal models to estimate physiologically plausible knee joint contact forces in children.
    Davico G; Lloyd DG; Carty CP; Killen BA; Devaprakash D; Pizzolato C
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1873-1886. PubMed ID: 36229699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.
    Dixon PC; Jansen K; Jonkers I; Stebbins J; Theologis T; Zavatsky AB
    J Biomech; 2015 Dec; 48(16):4238-45. PubMed ID: 26555714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets.
    Imani Nejad Z; Khalili K; Hosseini Nasab SH; Schütz P; Damm P; Trepczynski A; Taylor WR; Smith CR
    Ann Biomed Eng; 2020 Apr; 48(4):1430-1440. PubMed ID: 32002734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement.
    Seth A; Hicks JL; Uchida TK; Habib A; Dembia CL; Dunne JJ; Ong CF; DeMers MS; Rajagopal A; Millard M; Hamner SR; Arnold EM; Yong JR; Lakshmikanth SK; Sherman MA; Ku JP; Delp SL
    PLoS Comput Biol; 2018 Jul; 14(7):e1006223. PubMed ID: 30048444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower limb biomechanics in individuals with chronic ankle instability during gait: a case-control study.
    Moisan G; Mainville C; Descarreaux M; Cantin V
    J Foot Ankle Res; 2021 May; 14(1):36. PubMed ID: 33941223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.