These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 33559209)

  • 1. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis.
    Laval T; Chaumont L; Demangel C
    Immunol Rev; 2021 May; 301(1):84-97. PubMed ID: 33559209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages.
    Daniel J; Maamar H; Deb C; Sirakova TD; Kolattukudy PE
    PLoS Pathog; 2011 Jun; 7(6):e1002093. PubMed ID: 21731490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Fatty Acid Oxidation Promotes Macrophage Control of Mycobacterium tuberculosis.
    Chandra P; He L; Zimmerman M; Yang G; Köster S; Ouimet M; Wang H; Moore KJ; Dartois V; Schilling JD; Philips JA
    mBio; 2020 Jul; 11(4):. PubMed ID: 32636249
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Shim D; Kim H; Shin SJ
    Front Immunol; 2020; 11():910. PubMed ID: 32477367
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Sachdeva K; Goel M; Sudhakar M; Mehta M; Raju R; Raman K; Singh A; Sundaramurthy V
    J Biol Chem; 2020 Jul; 295(27):9192-9210. PubMed ID: 32424041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response.
    Singh A; Crossman DK; Mai D; Guidry L; Voskuil MI; Renfrow MB; Steyn AJ
    PLoS Pathog; 2009 Aug; 5(8):e1000545. PubMed ID: 19680450
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Stüve P; Minarrieta L; Erdmann H; Arnold-Schrauf C; Swallow M; Guderian M; Krull F; Hölscher A; Ghorbani P; Behrends J; Abraham WR; Hölscher C; Sparwasser TD; Berod L
    Front Immunol; 2018; 9():495. PubMed ID: 29675017
    [No Abstract]   [Full Text] [Related]  

  • 8. De novo synthesized polyunsaturated fatty acids operate as both host immunomodulators and nutrients for
    Laval T; Pedró-Cos L; Malaga W; Guenin-Macé L; Pawlik A; Mayau V; Yahia-Cherbal H; Delos O; Frigui W; Bertrand-Michel J; Guilhot C; Demangel C
    Elife; 2021 Dec; 10():. PubMed ID: 34951591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidomics revealed the global lipid responses of primary bovine alveolar macrophages to infections of Mycobacterium tuberculosis and Mycobacterium bovis.
    Gao W; Cai Y; Zhang G; Wang X; Wang J; Li Y; Wang Y
    Int Immunopharmacol; 2022 Mar; 104():108407. PubMed ID: 34924313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets.
    Barisch C; Soldati T
    Biochimie; 2017 Oct; 141():54-61. PubMed ID: 28587792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of
    Chen Z; Kong X; Ma Q; Chen J; Zeng Y; Liu H; Wang X; Lu S
    Front Immunol; 2024; 15():1402024. PubMed ID: 38873598
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Woo M; Wood C; Kwon D; Park KP; Fejer G; Delorme V
    Front Immunol; 2018; 9():438. PubMed ID: 29593716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation.
    Genoula M; Marín Franco JL; Maio M; Dolotowicz B; Ferreyra M; Milillo MA; Mascarau R; Moraña EJ; Palmero D; Matteo M; Fuentes F; López B; Barrionuevo P; Neyrolles O; Cougoule C; Lugo-Villarino G; Vérollet C; Sasiain MDC; Balboa L
    PLoS Pathog; 2020 Oct; 16(10):e1008929. PubMed ID: 33002063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence.
    Kalam H; Chou CH; Kadoki M; Graham DB; Deguine J; Hung DT; Xavier RJ
    Cell Host Microbe; 2023 Jun; 31(6):978-992.e5. PubMed ID: 37269834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review.
    Mekonnen D; Derbie A; Mihret A; Yimer SA; Tønjum T; Gelaw B; Nibret E; Munshae A; Waddell SJ; Aseffa A
    Lipids Health Dis; 2021 Oct; 20(1):129. PubMed ID: 34602073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual RNA-Seq of Mtb-Infected Macrophages In Vivo Reveals Ontologically Distinct Host-Pathogen Interactions.
    Pisu D; Huang L; Grenier JK; Russell DG
    Cell Rep; 2020 Jan; 30(2):335-350.e4. PubMed ID: 31940480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection.
    Cumming BM; Rahman MA; Lamprecht DA; Rohde KH; Saini V; Adamson JH; Russell DG; Steyn AJC
    PLoS Pathog; 2017 May; 13(5):e1006389. PubMed ID: 28542477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation.
    Genoula M; Marín Franco JL; Dupont M; Kviatcovsky D; Milillo A; Schierloh P; Moraña EJ; Poggi S; Palmero D; Mata-Espinosa D; González-Domínguez E; León Contreras JC; Barrionuevo P; Rearte B; Córdoba Moreno MO; Fontanals A; Crotta Asis A; Gago G; Cougoule C; Neyrolles O; Maridonneau-Parini I; Sánchez-Torres C; Hernández-Pando R; Vérollet C; Lugo-Villarino G; Sasiain MDC; Balboa L
    Front Immunol; 2018; 9():459. PubMed ID: 29593722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress.
    Lee W; VanderVen BC; Fahey RJ; Russell DG
    J Biol Chem; 2013 Mar; 288(10):6788-800. PubMed ID: 23306194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.