These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33559347)
21. Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. Salverda JM; Vengris M; Krueger BP; Scholes GD; Czarnoleski AR; Novoderezhkin V; van Amerongen H; van Grondelle R Biophys J; 2003 Jan; 84(1):450-65. PubMed ID: 12524298 [TBL] [Abstract][Full Text] [Related]
22. Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. Womick JM; Moran AM J Phys Chem B; 2009 Dec; 113(48):15747-59. PubMed ID: 19894754 [TBL] [Abstract][Full Text] [Related]
23. Visible Light Excitation-Induced Luminescence from Gold Nanoclusters Following Surface Ligand Complexation with Zn Gayen C; Basu S; Goswami U; Paul A Langmuir; 2019 Jul; 35(27):9037-9043. PubMed ID: 31203628 [TBL] [Abstract][Full Text] [Related]
24. Investigation of macrocyclic polymers as artificial light harvesters: subpicosecond energy transfer in poly(9,9-dimethyl-2-vinylfluorene). Johnson JM; Chen R; Chen X; Moskun AC; Zhang X; Hogen-Esch TE; Bradforth SE J Phys Chem B; 2008 Dec; 112(51):16367-81. PubMed ID: 19367891 [TBL] [Abstract][Full Text] [Related]
25. A highly efficient heptamethine cyanine antenna for photosynthetic Reaction Center: From chemical design to ultrafast energy transfer investigation of the hybrid system. la Gatta S; Milano F; Farinola GM; Agostiano A; Di Donato M; Lapini A; Foggi P; Trotta M; Ragni R Biochim Biophys Acta Bioenerg; 2019 Apr; 1860(4):350-359. PubMed ID: 30721661 [TBL] [Abstract][Full Text] [Related]
26. An artificial antenna complex containing four Ru(bpy)3(2+)-type chromophores as light-harvesting components and a Ru(bpy)(CN)4(2-) subunit as the energy trap. A structural motif which resembles the natural photosynthetic systems. Loiseau F; Marzanni aG; Quici S; Indellic MT; Campagna S Chem Commun (Camb); 2003 Jan; (2):286-7. PubMed ID: 12585433 [TBL] [Abstract][Full Text] [Related]
27. Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square. Sautter A; Kaletas BK; Schmid DG; Dobrawa R; Zimine M; Jung G; van Stokkum IH; De Cola L; Williams RM; Würthner F J Am Chem Soc; 2005 May; 127(18):6719-29. PubMed ID: 15869294 [TBL] [Abstract][Full Text] [Related]
28. New structural insights into the stability of Au Han W; Wang E; Xu WW Phys Chem Chem Phys; 2022 Jul; 24(26):15920-15924. PubMed ID: 35758327 [TBL] [Abstract][Full Text] [Related]
29. Sequential energy transfer driven by monoexponential dynamics in a biohybrid light-harvesting complex 2 (LH2). Yoneda Y; Kato D; Kondo M; Nagashima KVP; Miyasaka H; Nagasawa Y; Dewa T Photosynth Res; 2020 Feb; 143(2):115-128. PubMed ID: 31620983 [TBL] [Abstract][Full Text] [Related]
30. Constructing Artificial Light-Harvesting Systems by Covalent Alignment of Aggregation-Induced Emission Molecules. Liu S; Jiang S; Xu J; Huang Z; Li F; Fan X; Luo Q; Tian W; Liu J; Xu B Macromol Rapid Commun; 2019 May; 40(9):e1800892. PubMed ID: 30791167 [TBL] [Abstract][Full Text] [Related]
31. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters. Aikens CM Acc Chem Res; 2018 Dec; 51(12):3065-3073. PubMed ID: 30444598 [TBL] [Abstract][Full Text] [Related]
32. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Wasielewski MR Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479 [TBL] [Abstract][Full Text] [Related]
33. Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting. Jana B; Bhattacharyya S; Patra A Nanoscale; 2016 Sep; 8(35):16034-43. PubMed ID: 27546792 [TBL] [Abstract][Full Text] [Related]
34. Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a--protein antenna trimers from the green bacterium Chlorobium tepidum. Savikhin S; Zhou W; Blankenship RE; Struve WS Biophys J; 1994 Jan; 66(1):110-3. PubMed ID: 8130329 [TBL] [Abstract][Full Text] [Related]
35. Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores. Yoneda Y; Noji T; Katayama T; Mizutani N; Komori D; Nango M; Miyasaka H; Itoh S; Nagasawa Y; Dewa T J Am Chem Soc; 2015 Oct; 137(40):13121-9. PubMed ID: 26403467 [TBL] [Abstract][Full Text] [Related]
36. New Structure Model of Au22(SR)18: Bitetrahederon Golden Kernel Enclosed by [Au6(SR)6] Au(I) Complex. Pei Y; Tang J; Tang X; Huang Y; Zeng XC J Phys Chem Lett; 2015 Apr; 6(8):1390-5. PubMed ID: 26263140 [TBL] [Abstract][Full Text] [Related]
37. Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core. Melkozernov AN; Bibby TS; Lin S; Barber J; Blankenship RE Biochemistry; 2003 Apr; 42(13):3893-903. PubMed ID: 12667080 [TBL] [Abstract][Full Text] [Related]
38. Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives. Dubey RK; Inan D; Sengupta S; Sudhölter EJR; Grozema FC; Jager WF Chem Sci; 2016 Jun; 7(6):3517-3532. PubMed ID: 29997844 [TBL] [Abstract][Full Text] [Related]
39. Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. Melkozernov AN; Lin S; Blankenship RE Biochemistry; 2000 Feb; 39(6):1489-98. PubMed ID: 10684631 [TBL] [Abstract][Full Text] [Related]
40. Gold nanoclusters cause selective light-driven biochemical catalysis in living nano-biohybrid organisms. Bertram JR; Ding Y; Nagpal P Nanoscale Adv; 2020 Jun; 2(6):2363-2370. PubMed ID: 36133370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]