These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33559683)
1. Unusual ring D fixation by three crucial residues promotes phycoviolobilin formation in the DXCF-type cyanobacteriochrome without the second Cys. Fushimi K; Narikawa R Biochem J; 2021 Mar; 478(5):1043-1059. PubMed ID: 33559683 [TBL] [Abstract][Full Text] [Related]
2. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
3. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion. Hoshino H; Narikawa R Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209 [TBL] [Abstract][Full Text] [Related]
4. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696 [TBL] [Abstract][Full Text] [Related]
5. Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2012 Feb; 51(7):1449-63. PubMed ID: 22279972 [TBL] [Abstract][Full Text] [Related]
6. Red/green cyanobacteriochromes acquire isomerization from phycocyanobilin to phycoviolobilin. Hoshino H; Miyake K; Fushimi K; Narikawa R Protein Sci; 2024 Aug; 33(8):e5132. PubMed ID: 39072823 [TBL] [Abstract][Full Text] [Related]
7. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor. Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966 [TBL] [Abstract][Full Text] [Related]
8. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Fushimi K; Hasegawa M; Ito T; Rockwell NC; Enomoto G; -Win NN; Lagarias JC; Ikeuchi M; Narikawa R Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15573-15580. PubMed ID: 32571944 [TBL] [Abstract][Full Text] [Related]
9. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Fushimi K; Matsunaga T; Narikawa R Photochem Photobiol Sci; 2020 Oct; 19(10):1289-1299. PubMed ID: 32789394 [TBL] [Abstract][Full Text] [Related]
10. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion. Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089 [TBL] [Abstract][Full Text] [Related]
11. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
12. Chemical inhomogeneity in the ultrafast dynamics of the DXCF cyanobacteriochrome Tlr0924. Freer LH; Kim PW; Corley SC; Rockwell NC; Zhao L; Thibert AJ; Lagarias JC; Larsen DS J Phys Chem B; 2012 Sep; 116(35):10571-81. PubMed ID: 22721495 [TBL] [Abstract][Full Text] [Related]
13. Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol Sci; 2015 May; 14(5):929-41. PubMed ID: 25738434 [TBL] [Abstract][Full Text] [Related]
14. There and Back Again: Loss and Reacquisition of Two-Cys Photocycles in Cyanobacteriochromes. Rockwell NC; Martin SS; Lagarias JC Photochem Photobiol; 2017 May; 93(3):741-754. PubMed ID: 28055111 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of D Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775 [TBL] [Abstract][Full Text] [Related]
17. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related]
18. Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Ikeuchi M; Ishizuka T Photochem Photobiol Sci; 2008 Oct; 7(10):1159-67. PubMed ID: 18846279 [TBL] [Abstract][Full Text] [Related]
19. A rising tide of blue-absorbing biliprotein photoreceptors: characterization of seven such bilin-binding GAF domains in Nostoc sp. PCC7120. Ma Q; Hua HH; Chen Y; Liu BB; Krämer AL; Scheer H; Zhao KH; Zhou M FEBS J; 2012 Nov; 279(21):4095-108. PubMed ID: 22958513 [TBL] [Abstract][Full Text] [Related]
20. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]