These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33559822)

  • 1. Characteristics analysis of near-field and far-field aerodynamic noise around high-speed railway bridge.
    Cao Y; Li Z; Ji W; Ma M
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29467-29483. PubMed ID: 33559822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on prediction in far-field aerodynamic noise of long-marshalling high-speed train.
    Qin D; Li T; Dai Z; Zhang J
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86580-86594. PubMed ID: 35678971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic performance of near-rail low-height noise barriers installed on suburban railway bridges.
    Song L; Gao K; Liu Q; Zhang L; Feng Q; Guo W
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):62330-62346. PubMed ID: 35396687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Source Coupling Based Analysis of the Acoustic Radiation Characteristics of the Wheel-Rail Region of High-Speed Railways.
    Hou B; Li J; Gao L; Wang D
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bridge height on airflow and aeolian sand flux near surface along the Qinghai-Tibet Railway, China.
    Xue C; Zhang K; An Z; Xiao J; Zhang H; Pan J
    Sci Rep; 2024 Jul; 14(1):15990. PubMed ID: 38987296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.
    Li GQ; Wang ZL; Chen S; Xu YL
    Sci Total Environ; 2016 Oct; 568():1295-1307. PubMed ID: 26879415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annoyance and activity disturbance induced by high-speed railway and conventional railway noise: a contrastive case study.
    Di GQ; Lin QL; Li ZG; Kang J
    Environ Health; 2014 Mar; 13(1):12. PubMed ID: 24602397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic performance evaluation of railway boundary walls using a computational fluid dynamics-based simulation approach.
    Kumar BS; Chowdary V
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):24344-24359. PubMed ID: 38443535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of non-fully enclosed windshield on aerodynamic and acoustic behaviors of high-speed train.
    Qin D; Li T; Zhou P; Zhang J
    Environ Sci Pollut Res Int; 2023 May; 30(25):67804-67819. PubMed ID: 37118394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Noise and Vibration Due to the Hokuriku Shinkansen Railway on the Living Environment: A Socio-Acoustic Survey One Year after the Opening.
    Morihara T; Yokoshima S; Matsumoto Y
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of flow field and aerodynamic noise of marine gas turbine air intake system.
    Luan Y; Yan L; Sun T; Zunino P
    J Acoust Soc Am; 2023 Aug; 154(2):886-901. PubMed ID: 37578193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.
    Li Q; Song X; Wu D
    J Acoust Soc Am; 2014 May; 135(5):2718-26. PubMed ID: 24815255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic Performance of an Adaptive GFRP Wind Barrier Structure for Railway Bridges.
    Dai Y; Dai X; Bai Y; He X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.
    Sanok S; Mendolia F; Wittkowski M; Rooney D; Putzke M; Aeschbach D
    Ergonomics; 2015; 58(6):1022-31. PubMed ID: 25597694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Footprints of High-Speed Railway Construction in China: A Case Study of the Beijing-Tianjin Line.
    Lin J; Cheng S; Li H; Yang D; Lin T
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31877844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Rail-Temperature-Prediction Model Based on Machine Learning: Warning of Train-Speed Restrictions Using Weather Forecasting.
    Hong S; Park C; Cho S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint optimization of high-speed train timetables, speed levels and stop plans for increasing capacity based on a compressed multilayer space-time network.
    Chen A; Zhang X; Chen J; Wang Z
    PLoS One; 2022; 17(3):e0264835. PubMed ID: 35239750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of railway noise on sleep medication intake: results from the ALPNAP-study.
    Lercher P; Brink M; Rudisser J; Van Renterghem T; Botteldooren D; Baulac M; Defrance J
    Noise Health; 2010; 12(47):110-9. PubMed ID: 20472956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of artificial neural networks to assess train horn noise at a railway level crossing in India.
    Kumar BS; Chowdary V
    Environ Monit Assess; 2023 Feb; 195(3):426. PubMed ID: 36828946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Railway noise annoyance on the railway track in northwest slovakia.
    Pultznerova A; Eva P; Kucharova D; Argalasova L
    Noise Health; 2018; 20(94):90-100. PubMed ID: 29785974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.