These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33559966)
1. MP3RNA-seq: Massively parallel 3' end RNA sequencing for high-throughput gene expression profiling and genotyping. Chen J; Zhang X; Yi F; Gao X; Song W; Zhao H; Lai J J Integr Plant Biol; 2021 Jul; 63(7):1227-1239. PubMed ID: 33559966 [TBL] [Abstract][Full Text] [Related]
2. Development of genic KASP SNP markers from RNA-Seq data for map-based cloning and marker-assisted selection in maize. Chen Z; Tang D; Ni J; Li P; Wang L; Zhou J; Li C; Lan H; Li L; Liu J BMC Plant Biol; 2021 Mar; 21(1):157. PubMed ID: 33771110 [TBL] [Abstract][Full Text] [Related]
3. QTG-Seq Accelerates QTL Fine Mapping through QTL Partitioning and Whole-Genome Sequencing of Bulked Segregant Samples. Zhang H; Wang X; Pan Q; Li P; Liu Y; Lu X; Zhong W; Li M; Han L; Li J; Wang P; Li D; Liu Y; Li Q; Yang F; Zhang YM; Wang G; Li L Mol Plant; 2019 Mar; 12(3):426-437. PubMed ID: 30597214 [TBL] [Abstract][Full Text] [Related]
4. QTL mapping in a maize F Wang J; Zhang X; Lin Z Plant Sci; 2018 Nov; 276():171-180. PubMed ID: 30348316 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
6. Mapping of QTL and identification of candidate genes conferring spontaneous haploid genome doubling in maize (Zea mays L.). Ren J; A Boerman N; Liu R; Wu P; Trampe B; Vanous K; Frei UK; Chen S; Lübberstedt T Plant Sci; 2020 Apr; 293():110337. PubMed ID: 32081276 [TBL] [Abstract][Full Text] [Related]
7. QTL mapping analysis of maize plant type based on SNP molecular marker. Zhu W; Zhao Y; Liu J; Huang L; Lu X; Kang D Cell Mol Biol (Noisy-le-grand); 2019 Feb; 65(2):18-27. PubMed ID: 30860467 [TBL] [Abstract][Full Text] [Related]
8. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. Liu C; Zhou Q; Dong L; Wang H; Liu F; Weng J; Li X; Xie C BMC Genomics; 2016 Nov; 17(1):915. PubMed ID: 27842488 [TBL] [Abstract][Full Text] [Related]
9. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). Wang B; Liu H; Liu Z; Dong X; Guo J; Li W; Chen J; Gao C; Zhu Y; Zheng X; Chen Z; Chen J; Song W; Hauck A; Lai J BMC Plant Biol; 2018 Jan; 18(1):17. PubMed ID: 29347909 [TBL] [Abstract][Full Text] [Related]
10. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065 [TBL] [Abstract][Full Text] [Related]
11. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). Zhang Z; Shang H; Shi Y; Huang L; Li J; Ge Q; Gong J; Liu A; Chen T; Wang D; Wang Y; Palanga KK; Muhammad J; Li W; Lu Q; Deng X; Tan Y; Song W; Cai J; Li P; Rashid Ho; Gong W; Yuan Y BMC Plant Biol; 2016 Apr; 16():79. PubMed ID: 27067834 [TBL] [Abstract][Full Text] [Related]
12. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. Tao A; Huang L; Wu G; Afshar RK; Qi J; Xu J; Fang P; Lin L; Zhang L; Lin P BMC Genomics; 2017 May; 18(1):355. PubMed ID: 28482802 [TBL] [Abstract][Full Text] [Related]
13. Specific-Locus Amplified Fragment Sequencing (SLAF-Seq) as High-Throughput SNP Genotyping Methods. Zhu Z; Sun B; Lei J Methods Mol Biol; 2021; 2264():75-87. PubMed ID: 33263904 [TBL] [Abstract][Full Text] [Related]
14. Large-scale translatome profiling annotates the functional genome and reveals the key role of genic 3' untranslated regions in translatomic variation in plants. Zhu W; Xu J; Chen S; Chen J; Liang Y; Zhang C; Li Q; Lai J; Li L Plant Commun; 2021 Jul; 2(4):100181. PubMed ID: 34327320 [TBL] [Abstract][Full Text] [Related]
15. Exome QTL-seq maps monogenic locus and QTLs in barley. Hisano H; Sakamoto K; Takagi H; Terauchi R; Sato K BMC Genomics; 2017 Feb; 18(1):125. PubMed ID: 28148242 [TBL] [Abstract][Full Text] [Related]
16. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology. Pareek CS; Błaszczyk P; Dziuba P; Czarnik U; Fraser L; Sobiech P; Pierzchała M; Feng Y; Kadarmideen HN; Kumar D PLoS One; 2017; 12(2):e0172687. PubMed ID: 28234981 [TBL] [Abstract][Full Text] [Related]
17. Combining QTL-seq and linkage mapping to uncover the genetic basis of single vs. paired spikelets in the advanced populations of two-ranked maize×teosinte. Chen Z; Tang D; Hu K; Zhang L; Yin Y; Ni J; Li P; Wang L; Rong T; Liu J BMC Plant Biol; 2021 Dec; 21(1):572. PubMed ID: 34863103 [TBL] [Abstract][Full Text] [Related]
18. Integrating GWAS and Gene Expression Analysis Identifies Candidate Genes for Root Morphology Traits in Maize at the Seedling Stage. Wang H; Wei J; Li P; Wang Y; Ge Z; Qian J; Fan Y; Ni J; Xu Y; Yang Z; Xu C Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31581635 [TBL] [Abstract][Full Text] [Related]
19. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. Li H; Yang Q; Fan N; Zhang M; Zhai H; Ni Z; Zhang Y BMC Genet; 2017 Apr; 18(1):36. PubMed ID: 28415964 [TBL] [Abstract][Full Text] [Related]
20. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Choi JK; Sa KJ; Park DH; Lim SE; Ryu SH; Park JY; Park KJ; Rhee HI; Lee M; Lee JK Genes Genomics; 2019 Jun; 41(6):667-678. PubMed ID: 30953340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]