These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33560306)

  • 21. Wearable activity trackers and artificial intelligence in the management of rheumatic diseases : Where are we in 2021?
    Davergne T; Kedra J; Gossec L
    Z Rheumatol; 2021 Dec; 80(10):928-935. PubMed ID: 34633504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of wearable fitness devices.
    Kaewkannate K; Kim S
    BMC Public Health; 2016 May; 16():433. PubMed ID: 27220855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harnessing the Potential of Wearable Activity Trackers for Heart Failure Self-Care.
    Alharbi M; Straiton N; Gallagher R
    Curr Heart Fail Rep; 2017 Feb; 14(1):23-29. PubMed ID: 28181075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers.
    Kao YS; Nawata K; Huang CY
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31487812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Do Fitness Apps Need Text Reminders? An Experiment Testing Goal-Setting Text Message Reminders to Promote Self-Monitoring.
    Liu S; Willoughby JF
    J Health Commun; 2018; 23(4):379-386. PubMed ID: 29601270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Usefulness of Modern Activity Trackers for Monitoring Exercise Behavior in Chronic Cardiac Patients: Validation Study.
    Herkert C; Kraal JJ; van Loon EMA; van Hooff M; Kemps HMC
    JMIR Mhealth Uhealth; 2019 Dec; 7(12):e15045. PubMed ID: 31855191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical Activity Trend eXtraction: A Framework for Extracting Moderate-Vigorous Physical Activity Trends From Wearable Fitness Tracker Data.
    Faust L; Wang C; Hachen D; Lizardo O; Chawla NV
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e11075. PubMed ID: 30860488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Who are mobile app users from healthy lifestyle websites? Analysis of patterns of app use and user characteristics.
    Elavsky S; Smahel D; Machackova H
    Transl Behav Med; 2017 Dec; 7(4):891-901. PubMed ID: 28929368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of Mobile Health Applications in Low-Income Populations: A Prospective Study of Facilitators and Barriers.
    Liu P; Astudillo K; Velez D; Kelley L; Cobbs-Lomax D; Spatz ES
    Circ Cardiovasc Qual Outcomes; 2020 Sep; 13(9):e007031. PubMed ID: 32885681
    [No Abstract]   [Full Text] [Related]  

  • 30. Apps for IMproving FITness and Increasing Physical Activity Among Young People: The AIMFIT Pragmatic Randomized Controlled Trial.
    Direito A; Jiang Y; Whittaker R; Maddison R
    J Med Internet Res; 2015 Aug; 17(8):e210. PubMed ID: 26316499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Technology to Help Promote Physical Activity.
    Chaddha A; Jackson EA; Richardson CR; Franklin BA
    Am J Cardiol; 2017 Jan; 119(1):149-152. PubMed ID: 27889045
    [No Abstract]   [Full Text] [Related]  

  • 32. Physical activity: Benefits and challenges during the COVID-19 pandemic.
    Dwyer MJ; Pasini M; De Dominicis S; Righi E
    Scand J Med Sci Sports; 2020 Jul; 30(7):1291-1294. PubMed ID: 32542719
    [No Abstract]   [Full Text] [Related]  

  • 33. Clusters of Adolescent Physical Activity Tracker Patterns and Their Associations With Physical Activity Behaviors in Finland and Ireland: Cross-Sectional Study.
    Ng K; Kokko S; Tammelin T; Kallio J; Belton S; O'Brien W; Murphy M; Powell C; Woods C
    J Med Internet Res; 2020 Sep; 22(9):e18509. PubMed ID: 32667894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of combined exercise intervention based on Internet and social media software for postoperative patients with breast cancer: study protocol for a randomized controlled trial.
    Xiaosheng D; Xiangren Y; Shuyuan H; Dezong G; Mengyao C; Meng D
    Trials; 2018 Sep; 19(1):477. PubMed ID: 30189899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Wearable Trackers' Ability to Estimate Sleep.
    Lee JM; Byun W; Keill A; Dinkel D; Seo Y
    Int J Environ Res Public Health; 2018 Jun; 15(6):. PubMed ID: 29914050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using the Technology Acceptance Model to Explore Adolescents' Perspectives on Combining Technologies for Physical Activity Promotion Within an Intervention: Usability Study.
    Drehlich M; Naraine M; Rowe K; Lai SK; Salmon J; Brown H; Koorts H; Macfarlane S; Ridgers ND
    J Med Internet Res; 2020 Mar; 22(3):e15552. PubMed ID: 32141834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Succeeding with prolonged usage of consumer-based activity trackers in clinical studies: a mixed methods approach.
    Henriksen A; Sand AS; Deraas T; Grimsgaard S; Hartvigsen G; Hopstock L
    BMC Public Health; 2020 Aug; 20(1):1300. PubMed ID: 32854671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Data management and wearables in older adults: A systematic review.
    Alharbi M; Straiton N; Smith S; Neubeck L; Gallagher R
    Maturitas; 2019 Jun; 124():100-110. PubMed ID: 30910279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Emergence of Personalized Health Technology.
    Allen LN; Christie GP
    J Med Internet Res; 2016 May; 18(5):e99. PubMed ID: 27165944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accupedo pedometer: daily walking step counter.
    Milanović Z; Stojiljković N; Pavlović L; Antić V; Stanković N
    Br J Sports Med; 2016 Nov; 50(22):1417-1418. PubMed ID: 26980617
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.