These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 33560539)

  • 1. Plant 3D genomics: the exploration and application of chromatin organization.
    Pei L; Li G; Lindsey K; Zhang X; Wang M
    New Phytol; 2021 Jun; 230(5):1772-1786. PubMed ID: 33560539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding the plant genome: From epigenome to 3D organization.
    Ouyang W; Cao Z; Xiong D; Li G; Li X
    J Genet Genomics; 2020 Aug; 47(8):425-435. PubMed ID: 33023833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant 3D Chromatin Organization: Important Insights from Chromosome Conformation Capture Analyses of the Last 10 Years.
    Zhang X; Wang T
    Plant Cell Physiol; 2021 Dec; 62(11):1648-1661. PubMed ID: 34486654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Features and Functional Implications of Plant 3D Genome Organization.
    Domb K; Wang N; Hummel G; Liu C
    Annu Rev Plant Biol; 2022 May; 73():173-200. PubMed ID: 35130445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the 3D Genome Architecture in Plants: Present and Future.
    Ouyang W; Xiong D; Li G; Li X
    Mol Plant; 2020 Dec; 13(12):1676-1693. PubMed ID: 33065269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The era of 3D and spatial genomics.
    Bouwman BAM; Crosetto N; Bienko M
    Trends Genet; 2022 Oct; 38(10):1062-1075. PubMed ID: 35680466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in three-dimensional genomics].
    Zhang F; Shen Z; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2791-2812. PubMed ID: 33398973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional chromatin packing and positioning of plant genomes.
    Doğan ES; Liu C
    Nat Plants; 2018 Aug; 4(8):521-529. PubMed ID: 30061747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis.
    Wang SZ; Jiang F; Zhu DL; Yang TL; Guo Y
    Yi Chuan; 2023 Apr; 45(4):279-294. PubMed ID: 37077163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis.
    Liu C; Cheng YJ; Wang JW; Weigel D
    Nat Plants; 2017 Sep; 3(9):742-748. PubMed ID: 28848243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The matrix revolutions: towards the decoding of the plant chromatin three-dimensional reality.
    Huang Y; Rodriguez-Granados NY; Latrasse D; Raynaud C; Benhamed M; Ramirez-Prado JS
    J Exp Bot; 2020 Aug; 71(17):5129-5147. PubMed ID: 32639553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entering the Next Dimension: Plant Genomes in 3D.
    Sotelo-Silveira M; Chávez Montes RA; Sotelo-Silveira JR; Marsch-Martínez N; de Folter S
    Trends Plant Sci; 2018 Jul; 23(7):598-612. PubMed ID: 29703667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular Chromosome Conformation Capture in Plants.
    Grob S
    Methods Mol Biol; 2017; 1610():73-92. PubMed ID: 28439858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of liquid-liquid phase separation in plant chromatin organization and transcriptional control.
    Wang N; Liu C
    Curr Opin Genet Dev; 2019 Apr; 55():59-65. PubMed ID: 31306885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq).
    Matelot M; Noordermeer D
    Methods Mol Biol; 2016; 1480():223-41. PubMed ID: 27659989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
    Li Z; Portillo-Ledesma S; Schlick T
    Curr Opin Cell Biol; 2023 Aug; 83():102209. PubMed ID: 37506571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Put your 3D glasses on: plant chromatin is on show.
    Rodriguez-Granados NY; Ramirez-Prado JS; Veluchamy A; Latrasse D; Raynaud C; Crespi M; Ariel F; Benhamed M
    J Exp Bot; 2016 May; 67(11):3205-21. PubMed ID: 27129951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton.
    Wang M; Wang P; Lin M; Ye Z; Li G; Tu L; Shen C; Li J; Yang Q; Zhang X
    Nat Plants; 2018 Feb; 4(2):90-97. PubMed ID: 29379149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data.
    Meluzzi D; Arya G
    Methods; 2020 Oct; 181-182():24-34. PubMed ID: 31470090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.