These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33561072)

  • 1. Scale-Up of Membrane-Based Zinc Recovery from Spent Pickling Acids of Hot-Dip Galvanizing.
    Arguillarena A; Margallo M; Arruti-Fernández A; Pinedo J; Gómez P; Urtiaga A
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33561072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular economy in hot-dip galvanizing with zinc and iron recovery from spent pickling acids.
    Arguillarena A; Margallo M; Arruti-Fernández A; Pinedo J; Gómez P; Ortiz I; Urtiaga A
    RSC Adv; 2023 Feb; 13(10):6481-6489. PubMed ID: 36845587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of zinc and iron recovery from spent pickling acids by membrane-based solvent extraction and electrowinning.
    Arguillarena A; Margallo M; Irabien Á; Urtiaga A
    J Environ Manage; 2022 Sep; 318():115567. PubMed ID: 35759966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction.
    Regel M; Sastre AM; Szymanowski J
    Environ Sci Technol; 2001 Feb; 35(3):630-5. PubMed ID: 11351740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.
    Bao S; Tang L; Li K; Ning P; Peng J; Guo H; Zhu T; Liu Y
    J Colloid Interface Sci; 2016 Jan; 462():235-42. PubMed ID: 26458121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion Dialysis for Separation of Hydrochloric Acid, Iron and Zinc Ions from Highly Concentrated Pickling Solutions.
    Gueccia R; Aguirre AR; Randazzo S; Cipollina A; Micale G
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32599784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.
    Ghare NY; Wani KS; Patil VS
    J Environ Sci Eng; 2013 Apr; 55(2):253-66. PubMed ID: 25464702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.
    Mansur MB; Rocha SD; Magalhães FS; Benedetto Jdos S
    J Hazard Mater; 2008 Feb; 150(3):669-78. PubMed ID: 17570579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of hollow fiber membrane contactors for catalyst recovery in the WPO process.
    Ortiz I; Urtiaga A; Abellán MJ; San Román F
    Ann N Y Acad Sci; 2003 Mar; 984():17-28. PubMed ID: 12783807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc recovery and waste sludge minimization from chromium passivation baths.
    Diban N; Mediavilla R; Urtiaga A; Ortiz I
    J Hazard Mater; 2011 Aug; 192(2):801-7. PubMed ID: 21704452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of zinc and cadmium from spent batteries using Cyphos IL 102 via solvent extraction route and synthesis of Zn and Cd oxide nanoparticles.
    Singh R; Mahandra H; Gupta B
    Waste Manag; 2017 Sep; 67():240-252. PubMed ID: 28578861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.
    Tsakiridis PE; Oustadakis P; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):8-14. PubMed ID: 20434263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of ion exchange and non-dispersive solvent extraction processes for the separation and concentration of Cr(VI) from ground waters.
    Galán B; Castañeda D; Ortiz I
    J Hazard Mater; 2008 Apr; 152(2):795-804. PubMed ID: 17884285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of Stainless Steel Rinse Waters Using Non-Dispersive Extraction and Strip Dispersion Membrane Technology.
    Alguacil FJ; Robla JI
    Membranes (Basel); 2023 Dec; 13(12):. PubMed ID: 38132906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Bath Chemical Composition for Batch Hot-Dip Galvanizing-A Review.
    Kania H; Mendala J; Kozuba J; Saternus M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32961755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent extraction separation of copper and zinc from MSWI fly ash leachates.
    Tang J; Steenari BM
    Waste Manag; 2015 Oct; 44():147-54. PubMed ID: 26227183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on Zn recovery from other metals in the spent mixed batteries through a sequence of hydrometallurgical processes.
    Shin DJ; Joo SH; Oh CH; Wang JP; Park JT; Min DJ; Shin SM
    Environ Technol; 2019 Nov; 40(26):3512-3522. PubMed ID: 29799331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient recovery of molybdenum from spent catalyst by an optimized process.
    Zhang M; Song H; Zheng C; Lin Z; Liu Y; Wu W; Gao X
    J Air Waste Manag Assoc; 2020 Oct; 70(10):971-979. PubMed ID: 32633619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recovery of zinc ion and cadmium ion with hollow fiber membrane extraction].
    Wang Y; Luo G; Wang Y; Wu Z; Dai Y
    Huan Jing Ke Xue; 2001 Sep; 22(5):74-8. PubMed ID: 11769234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.