These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33561125)

  • 1. Revisiting the importance of model fitting for model-based fMRI: It does matter in computational psychiatry.
    Katahira K; Toyama A
    PLoS Comput Biol; 2021 Feb; 17(2):e1008738. PubMed ID: 33561125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Neural and Emotional Impacts of Reward Prediction Errors With Major Depression.
    Rutledge RB; Moutoussis M; Smittenaar P; Zeidman P; Taylor T; Hrynkiewicz L; Lam J; Skandali N; Siegel JZ; Ousdal OT; Prabhu G; Dayan P; Fonagy P; Dolan RJ
    JAMA Psychiatry; 2017 Aug; 74(8):790-797. PubMed ID: 28678984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A healthy fear of the unknown: perspectives on the interpretation of parameter fits from computational models in neuroscience.
    Nassar MR; Gold JI
    PLoS Comput Biol; 2013 Apr; 9(4):e1003015. PubMed ID: 23592963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is Model Fitting Necessary for Model-Based fMRI?
    Wilson RC; Niv Y
    PLoS Comput Biol; 2015 Jun; 11(6):e1004237. PubMed ID: 26086934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based fMRI and its application to reward learning and decision making.
    O'Doherty JP; Hampton A; Kim H
    Ann N Y Acad Sci; 2007 May; 1104():35-53. PubMed ID: 17416921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Phenotyping in Psychiatry: A Worked Example.
    Schwartenbeck P; Friston K
    eNeuro; 2016; 3(4):. PubMed ID: 27517087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel technique for delineating the effect of variation in the learning rate on the neural correlates of reward prediction errors in model-based fMRI.
    Chase HW
    Front Psychol; 2023; 14():1211528. PubMed ID: 38187436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual differences and the neural representations of reward expectation and reward prediction error.
    Cohen MX
    Soc Cogn Affect Neurosci; 2007 Mar; 2(1):20-30. PubMed ID: 17710118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression.
    Kumar P; Goer F; Murray L; Dillon DG; Beltzer ML; Cohen AL; Brooks NH; Pizzagalli DA
    Neuropsychopharmacology; 2018 Jun; 43(7):1581-1588. PubMed ID: 29540863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices.
    Zhang L; Lengersdorff L; Mikus N; Gläscher J; Lamm C
    Soc Cogn Affect Neurosci; 2020 Jul; 15(6):695-707. PubMed ID: 32608484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Psychiatry and the Challenge of Schizophrenia.
    Krystal JH; Murray JD; Chekroud AM; Corlett PR; Yang G; Wang XJ; Anticevic A
    Schizophr Bull; 2017 May; 43(3):473-475. PubMed ID: 28338845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
    Diederen KM; Ziauddeen H; Vestergaard MD; Spencer T; Schultz W; Fletcher PC
    J Neurosci; 2017 Feb; 37(7):1708-1720. PubMed ID: 28202786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generative models for clinical applications in computational psychiatry.
    Frässle S; Yao Y; Schöbi D; Aponte EA; Heinzle J; Stephan KE
    Wiley Interdiscip Rev Cogn Sci; 2018 May; 9(3):e1460. PubMed ID: 29369526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The normative modeling framework for computational psychiatry.
    Rutherford S; Kia SM; Wolfers T; Fraza C; Zabihi M; Dinga R; Berthet P; Worker A; Verdi S; Ruhe HG; Beckmann CF; Marquand AF
    Nat Protoc; 2022 Jul; 17(7):1711-1734. PubMed ID: 35650452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models of neuromodulation for computational psychiatry.
    Iglesias S; Tomiello S; Schneebeli M; Stephan KE
    Wiley Interdiscip Rev Cogn Sci; 2017 May; 8(3):. PubMed ID: 27653804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Computational psychiatry : Data-driven vs. mechanistic approaches].
    Kaminski J; Katthagen T; Schlagenhauf F
    Nervenarzt; 2019 Nov; 90(11):1117-1124. PubMed ID: 31538209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices.
    Gluth S; Hotaling JM; Rieskamp J
    J Neurosci; 2017 Jan; 37(2):371-382. PubMed ID: 28077716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI.
    Koppe G; Toutounji H; Kirsch P; Lis S; Durstewitz D
    PLoS Comput Biol; 2019 Aug; 15(8):e1007263. PubMed ID: 31433810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.