BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33561165)

  • 21. FoxO directly regulates the expression of TOR/S6K and vitellogenin to modulate the fecundity of the brown planthopper.
    Dong Y; Chen W; Kang K; Pang R; Dong Y; Liu K; Zhang W
    Sci China Life Sci; 2021 Jan; 64(1):133-143. PubMed ID: 32567002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative contribution of genetic and environmental factors to determination of wing morphs of the brown planthopper Nilaparvata lugens.
    Zhang C; Mao MS; Liu XD
    Insect Sci; 2023 Feb; 30(1):208-220. PubMed ID: 35306741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological Trade-offs between Migration and Reproduction Are Mediated by the Nutrition-Sensitive Insulin-Signaling Pathway.
    Lin X; Yao Y; Wang B; Emlen DJ; Lavine LC
    Int J Biol Sci; 2016; 12(5):607-16. PubMed ID: 27143957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FoxO is required for optimal fitness of the migratory brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae).
    Zhang JL; Liu KL; Cai XY; Liu XY; Xu HJ
    Insect Sci; 2023 Oct; 30(5):1352-1362. PubMed ID: 36528849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apterous A modulates wing size, bristle formation and patterning in Nilaparvata lugens.
    Liu F; Li K; Li J; Hu D; Zhao J; He Y; Zou Y; Feng Y; Hua H
    Sci Rep; 2015 May; 5():10526. PubMed ID: 25995006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of NlE74A on vitellogenin may be mediated by angiotensin converting enzyme through a fecundity-related SNP in the brown planthopper, Nilaparvata lugens.
    Sun Z; Shi Q; Xu C; Wang R; Wang H; Song Y; Zeng R
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Nov; 225():26-32. PubMed ID: 29932974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion transport peptide (ITP) regulates wing expansion and cuticle melanism in the brown planthopper, Nilaparvata lugens.
    Yu B; Li DT; Wang SL; Xu HJ; Bao YY; Zhang CX
    Insect Mol Biol; 2016 Dec; 25(6):778-787. PubMed ID: 27515909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the Distal-less gene homologue, NlDll, in the brown planthopper, Nilaparvata lugens (Stål).
    Lin X; Yao Y; Jin M; Li Q
    Gene; 2014 Feb; 535(2):112-8. PubMed ID: 24321689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The function of spineless in antenna and wing development of the brown planthopper, Nilaparvata lugens.
    Li X; Liu FZ; Cai WL; Zhao J; Hua HX; Zou YL
    Insect Mol Biol; 2019 Apr; 28(2):196-207. PubMed ID: 30230080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular characterization, tissue and developmental expression profiles of cryptochrome genes in wing dimorphic brown planthoppers, Nilaparvata lugens.
    Xu JJ; Wan GJ; Hu DB; He J; Chen FJ; Wang XH; Hua HX; Pan WD
    Insect Sci; 2016 Dec; 23(6):805-818. PubMed ID: 26227859
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of
    Gao H; Jiang X; Zheng S; Li Y; Lin X
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De Novo Assembly and Analysis of the White-Backed Planthopper (Sogatella furcifera) Transcriptome.
    Liang AW; Zhang H; Lin J; Wang FH
    J Insect Sci; 2018 Jul; 18(4):. PubMed ID: 30085169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An InR/mir-9a/NlUbx regulatory cascade regulates wing diphenism in brown planthoppers.
    Li X; Zhao MH; Tian MM; Zhao J; Cai WL; Hua HX
    Insect Sci; 2021 Oct; 28(5):1300-1313. PubMed ID: 32935926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptomic Analysis Suggests Genes Expressed Stage-Independently and Stage-Dependently Modulating the Wing Dimorphism of the Brown Planthopper.
    Zhang C; Liu XD
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31878073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host quality induces phenotypic plasticity in a wing polyphenic insect.
    Lin X; Xu Y; Jiang J; Lavine M; Lavine LC
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7563-7568. PubMed ID: 29967173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BTB domain-containing protein 6 is involved in the development of locust wings during the nymph to adult transition.
    Zhao X; Zhang J; Yang Y; Liu W; Zhang J
    Int J Biol Macromol; 2020 May; 150():965-973. PubMed ID: 31758989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The miR-9b microRNA mediates dimorphism and development of wing in aphids.
    Shang F; Niu J; Ding BY; Zhang W; Wei DD; Wei D; Jiang HB; Wang JJ
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8404-8409. PubMed ID: 32217736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide analysis of long non-coding RNAs and their association with wing development in Aphis citricidus (Hemiptera: Aphididae).
    Shang F; Ding BY; Zhang YT; Wu JJ; Pan ST; Wang JJ
    Insect Biochem Mol Biol; 2021 Dec; 139():103666. PubMed ID: 34619323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression profiling of winged- and wingless-destined pea aphid embryos implicates insulin/insulin growth factor signaling in morph differences.
    Grantham ME; Shingleton AW; Dudley E; Brisson JA
    Evol Dev; 2020 May; 22(3):257-268. PubMed ID: 31682317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.