BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33561590)

  • 1. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport.
    Ning P; Liang J; Li L; Chen D; Qin L; Yao X; Chen H; Huang Y
    J Colloid Interface Sci; 2021 May; 590():407-414. PubMed ID: 33561590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells.
    Matebese F; Taziwa R; Mutukwa D
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572658
    [No Abstract]   [Full Text] [Related]  

  • 3. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation.
    Yang Y; Pham ND; Yao D; Fan L; Hoang MT; Tiong VT; Wang Z; Zhu H; Wang H
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28431-28441. PubMed ID: 31311262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-Processed Smooth Copper Thiocyanate Layer with Improved Hole Injection Ability for the Fabrication of Quantum Dot Light-Emitting Diodes.
    Wen MR; Yang SH; Chen WS
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells.
    Dong J; Guo J; Wang X; Dong P; Wang Z; Zhou Y; Miao Y; Zhao B; Hao Y; Wang H; Xu B; Yin S
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46373-46380. PubMed ID: 32945159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells.
    Mohan L; Ratnasingham SR; Panidi J; Daboczi M; Kim JS; Anthopoulos TD; Briscoe J; McLachlan MA; Kreouzis T
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38499-38507. PubMed ID: 34365787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI
    He J; Casanova D; Fang WH; Long R; Prezhdo OV
    J Phys Chem Lett; 2020 Jun; 11(11):4481-4489. PubMed ID: 32423207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step electrodeposition of CuSCN/CuI nanocomposite and its hole transport-ability in inverted planar perovskite solar cells.
    Ramachandran K; Jeganathan C; Subbian K
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33951622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylammonium Compensation Effects in MAPbI
    Kim G; Kwon N; Lee D; Kim M; Kim M; Lee Y; Kim W; Hyeon D; Kim B; Jeong MS; Hong J; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5203-5210. PubMed ID: 35050584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band-Tail Transport of CuSCN: Origin of Hole Extraction Enhancement in Organic Photovoltaics.
    Kim M; Park S; Jeong J; Shin D; Kim J; Ryu SH; Kim KS; Lee H; Yi Y
    J Phys Chem Lett; 2016 Jul; 7(14):2856-61. PubMed ID: 27396718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN.
    Tang ZZ; Weng YG; Yin WY; Jiang M; Zhu QY; Dai J
    Inorg Chem; 2019 Dec; 58(23):15824-15831. PubMed ID: 31710209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trap and transfer. two-step hole injection across the Sb2S3/CuSCN interface in solid-state solar cells.
    Christians JA; Kamat PV
    ACS Nano; 2013 Sep; 7(9):7967-74. PubMed ID: 23977822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells.
    Lv M; Zhu J; Huang Y; Li Y; Shao Z; Xu Y; Dai S
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17482-8. PubMed ID: 26186007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface.
    Sit WY; Eisner FD; Lin YH; Firdaus Y; Seitkhan A; Balawi AH; Laquai F; Burgess CH; McLachlan MA; Volonakis G; Giustino F; Anthopoulos TD
    Adv Sci (Weinh); 2018 Apr; 5(4):1700980. PubMed ID: 29721432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells.
    Jung M; Kim YC; Jeon NJ; Yang WS; Seo J; Noh JH; Il Seok S
    ChemSusChem; 2016 Sep; 9(18):2592-2596. PubMed ID: 27611720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates.
    Vlčková Živcová Z; Bouša M; Velický M; Frank O; Kavan L
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%.
    Ye S; Sun W; Li Y; Yan W; Peng H; Bian Z; Liu Z; Huang C
    Nano Lett; 2015 Jun; 15(6):3723-8. PubMed ID: 25938881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure and Surface Properties of Copper Thiocyanate: A Promising Hole Transport Material for Organic Photovoltaic Cells.
    Odeke BA; Chung GD; Fajemisin JA; Suraj KS; Tonui DK; Tobi AR; Bewaale TC; Ajibola JA; Dzade NY
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Colored and Conducting CuSCN Composite Coated with CuS Nanoparticles.
    Premalal EVA; Kannangara YY; Ratnayake SP; Nalin de Silva KM
    Nanoscale Res Lett; 2017 Aug; 12(1):507. PubMed ID: 28836179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational Relaxation Dynamics of a Semiconductor Copper(I) Thiocyanate (CuSCN) Film as a Hole-Transporting Layer.
    Li X; Zhou D; Hao H; Chen H; Weng Y; Bian H
    J Phys Chem Lett; 2020 Jan; 11(2):548-555. PubMed ID: 31884795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.