These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33561594)

  • 1. A pore network modelling approach to investigate the interplay between local and Darcy viscosities during the flow of shear-thinning fluids in porous media.
    Rodríguez de Castro A; Goyeau B
    J Colloid Interface Sci; 2021 May; 590():446-457. PubMed ID: 33561594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-Scale Modeling of Non-Newtonian Shear-Thinning Fluids in Blood Oxygenator Design.
    Low KW; van Loon R; Rolland SA; Sienz J
    J Biomech Eng; 2016 May; 138(5):051001. PubMed ID: 26902524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of Different Arrangements of Molecular Chains in Terms of Low and High Shear Rate's Viscosities on Heat and Mass Flow of Nonnewtonian Shear thinning Fluids.
    Hassan M; Faisal A; Javid K; Khan S; Ahmad A; Khan R
    Comb Chem High Throughput Screen; 2022; 25(7):1115-1126. PubMed ID: 34554900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling cross model non-Newtonian fluid flow in porous media.
    Hauswirth SC; Bowers CA; Fowler CP; Schultz PB; Hauswirth AD; Weigand T; Miller CT
    J Contam Hydrol; 2020 Nov; 235():103708. PubMed ID: 32896762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the local viscosity of non-Newtonian fluids flowing through disordered porous structures.
    Eberhard U; Seybold HJ; Secchi E; Jiménez-Martínez J; Rühs PA; Ofner A; Andrade JS; Holzner M
    Sci Rep; 2020 Jul; 10(1):11733. PubMed ID: 32678140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling.
    Deplano V; Knapp Y; Bailly L; Bertrand E
    J Biomech; 2014 Apr; 47(6):1262-9. PubMed ID: 24612986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive network modeling of single-phase non-Newtonian flow in porous media.
    Lopez X; Valvatne PH; Blunt MJ
    J Colloid Interface Sci; 2003 Aug; 264(1):256-65. PubMed ID: 12885543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale.
    Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualification of New Methods for Measuring In Situ Rheology of Non-Newtonian Fluids in Porous Media.
    Jacobsen JG; Shaker Shiran B; Skauge T; Sorbie KS; Skauge A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32075148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-Scale Modeling of the Effect of Wettability on Two-Phase Flow Properties for Newtonian and Non-Newtonian Fluids.
    Tembely M; Alameri WS; AlSumaiti AM; Jouini MS
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of shear-thinning fluids on residual oil formation in microfluidic pore networks.
    Rodríguez de Castro A; Oostrom M; Shokri N
    J Colloid Interface Sci; 2016 Jun; 472():34-43. PubMed ID: 26998787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal Analysis of a Non-Newtonian Fluid Flow in a Rough-Walled Pipe.
    Bouchendouka A; Fellah ZEA; Larbi Z; Louna Z; Ogam E; Fellah M; Depollier C
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
    Chen S; He X; Bertola V; Wang M
    J Colloid Interface Sci; 2014 Dec; 436():186-93. PubMed ID: 25278358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of the immiscible displacement of shear-thinning fluids in pore networks.
    Tsakiroglou CD; Theodoropoulou M; Karoutsos V; Papanicolaou D; Sygouni V
    J Colloid Interface Sci; 2003 Nov; 267(1):217-32. PubMed ID: 14554188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-Liquid Flows with Non-Newtonian Dispersed Phase in a T-Junction Microchannel.
    Yagodnitsyna A; Kovalev A; Bilsky A
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the characteristics of natural hydraulic dampers: An image-based approach to study the fluid flow behaviour inside the human meniscal tissue.
    Waghorne J; Bonomo FP; Rabbani A; Bell D; Barrera O
    Acta Biomater; 2024 Feb; 175():157-169. PubMed ID: 38159896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.