These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 33561657)
1. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Landa P Plant Physiol Biochem; 2021 Apr; 161():12-24. PubMed ID: 33561657 [TBL] [Abstract][Full Text] [Related]
2. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Wang Y; Hu J; Dai Z; Li J; Huang J Plant Physiol Biochem; 2016 Nov; 108():353-360. PubMed ID: 27518375 [TBL] [Abstract][Full Text] [Related]
3. Physiological impacts of zero valent iron, Fe Li M; Zhang P; Adeel M; Guo Z; Chetwynd AJ; Ma C; Bai T; Hao Y; Rui Y Environ Pollut; 2021 Jan; 269():116134. PubMed ID: 33290949 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Aqeel U; Aftab T; Khan MMA; Naeem M; Khan MN Chemosphere; 2022 Mar; 291(Pt 1):132672. PubMed ID: 34756946 [TBL] [Abstract][Full Text] [Related]
5. Interaction of γ-Fe Hu J; Guo H; Li J; Wang Y; Xiao L; Xing B J Nanobiotechnology; 2017 Jul; 15(1):51. PubMed ID: 28693496 [TBL] [Abstract][Full Text] [Related]
6. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment. Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602 [TBL] [Abstract][Full Text] [Related]
7. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Dimkpa CO; Singh U; Bindraban PS; Elmer WH; Gardea-Torresdey JL; White JC Sci Total Environ; 2019 Oct; 688():926-934. PubMed ID: 31726574 [TBL] [Abstract][Full Text] [Related]
8. Plants and rhizospheric environment: Affected by zinc oxide nanoparticles (ZnO NPs). A review. Liu L; Nian H; Lian T Plant Physiol Biochem; 2022 Aug; 185():91-100. PubMed ID: 35667318 [TBL] [Abstract][Full Text] [Related]
9. Physiological and biochemical response of wheat (Triticum aestivum) to TiO Ullah S; Adeel M; Zain M; Rizwan M; Irshad MK; Jilani G; Hameed A; Khan A; Arshad M; Raza A; Baluch MA; Rui Y J Environ Manage; 2020 Jun; 263():110365. PubMed ID: 32883473 [TBL] [Abstract][Full Text] [Related]
10. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
11. Effects of TiO Movafeghi A; Khataee A; Abedi M; Tarrahi R; Dadpour M; Vafaei F J Environ Sci (China); 2018 Feb; 64():130-138. PubMed ID: 29478632 [TBL] [Abstract][Full Text] [Related]
12. Effect of the suspension of Ag-incorporated TiO2 nanoparticles (Ag-TiO2 NPs) on certain growth, physiology and phytotoxicity parameters in spinach seedlings. Gordillo-Delgado F; Zuluaga-Acosta J; Restrepo-Guerrero G PLoS One; 2020; 15(12):e0244511. PubMed ID: 33373403 [TBL] [Abstract][Full Text] [Related]
13. Single and combined effects of aluminum (Al Benavides M; Fernández-Lodeiro J; Coelho P; Lodeiro C; Diniz MS Environ Sci Pollut Res Int; 2016 Dec; 23(24):24578-24591. PubMed ID: 27787704 [TBL] [Abstract][Full Text] [Related]
14. Jointed toxicity of TiO Ji Y; Zhou Y; Ma C; Feng Y; Hao Y; Rui Y; Wu W; Gui X; Le VN; Han Y; Wang Y; Xing B; Liu L; Cao W Plant Physiol Biochem; 2017 Jan; 110():82-93. PubMed ID: 27193349 [TBL] [Abstract][Full Text] [Related]
15. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Zahedi SM; Abdelrahman M; Hosseini MS; Hoveizeh NF; Tran LP Environ Pollut; 2019 Oct; 253():246-258. PubMed ID: 31319241 [TBL] [Abstract][Full Text] [Related]
16. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene. Zhu J; Zou Z; Shen Y; Li J; Shi S; Han S; Zhan X Environ Pollut; 2019 Apr; 247():108-117. PubMed ID: 30669078 [TBL] [Abstract][Full Text] [Related]
17. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Ahmad A; Hashmi SS; Palma JM; Corpas FJ Chemosphere; 2022 Mar; 290():133329. PubMed ID: 34922969 [TBL] [Abstract][Full Text] [Related]
18. Toxicity assessment of cobalt ferrite nanoparticles on wheat plants. López-Luna J; Camacho-Martínez MM; Solís-Domínguez FA; González-Chávez MC; Carrillo-González R; Martinez-Vargas S; Mijangos-Ricardez OF; Cuevas-Díaz MC J Toxicol Environ Health A; 2018; 81(14):604-619. PubMed ID: 29737961 [TBL] [Abstract][Full Text] [Related]
19. Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles' (NPs) stress. Huang Z; Xie W; Wang M; Liu X; Ashraf U; Qin D; Zhuang M; Li W; Li Y; Wang S; Tian H; Mo Z Chemosphere; 2020 Jul; 250():126337. PubMed ID: 32135442 [TBL] [Abstract][Full Text] [Related]
20. The behavior, transport, and positive regulation mechanism of ZnO nanoparticles in a plant-soil-microbe environment. Lv W; Geng H; Zhou B; Chen H; Yuan R; Ma C; Liu R; Xing B; Wang F Environ Pollut; 2022 Dec; 315():120368. PubMed ID: 36216179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]