These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 33561760)
21. Selection of microalgae for high CO2 fixation efficiency and lipid accumulation from ten Chlorella strains using municipal wastewater. Hu X; Zhou J; Liu G; Gui B J Environ Sci (China); 2016 Aug; 46():83-91. PubMed ID: 27521939 [TBL] [Abstract][Full Text] [Related]
22. In situ biological CO Razzak SA Bioprocess Biosyst Eng; 2019 Jan; 42(1):93-105. PubMed ID: 30259109 [TBL] [Abstract][Full Text] [Related]
23. Application of Chlorella vulgaris for nutrient removal from synthetic wastewater and MBR-treated bio-park secondary effluent: growth kinetics, effects of carbon and phosphate concentrations. Ms K; Johnson I; Ngo HH; Guo W; Kumar M Environ Monit Assess; 2023 Feb; 195(3):415. PubMed ID: 36807702 [TBL] [Abstract][Full Text] [Related]
24. Kinetic modeling of microalgae growth and CO Almomani F Sci Total Environ; 2020 Jun; 720():137594. PubMed ID: 32143050 [TBL] [Abstract][Full Text] [Related]
25. Insight into nitrogen and phosphorus coupling effects on mixotrophic Chlorella vulgaris growth under stably controlled nutrient conditions. Huang Y; Lou C; Luo L; Wang XC Sci Total Environ; 2021 Jan; 752():141747. PubMed ID: 32889263 [TBL] [Abstract][Full Text] [Related]
26. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance. Pang N; Bergeron AD; Gu X; Fu X; Dong T; Yao Y; Chen S Environ Sci Technol; 2020 Dec; 54(23):15366-15375. PubMed ID: 33190494 [TBL] [Abstract][Full Text] [Related]
27. Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Xu M; Xue Z; Sun S; Zhao C; Liu J; Liu J; Zhao Y Bioresour Technol; 2020 Oct; 314():123766. PubMed ID: 32645575 [TBL] [Abstract][Full Text] [Related]
28. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511 [TBL] [Abstract][Full Text] [Related]
29. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris. Szwarc K; Szwarc D; Zieliński M Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532 [TBL] [Abstract][Full Text] [Related]
30. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles. Ren H; Ni J; Shen M; Zhou D; Sun F; Loke Show P Bioresour Technol; 2023 Aug; 382():129176. PubMed ID: 37187334 [TBL] [Abstract][Full Text] [Related]
31. Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks. Salgado EM; Esteves AF; Gonçalves AL; Pires JCM Environ Res; 2023 Aug; 231(Pt 1):116076. PubMed ID: 37156357 [TBL] [Abstract][Full Text] [Related]
32. Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR). Peng YY; Gao F; Yang HL; Wu HW; Li C; Lu MM; Yang ZY Sci Total Environ; 2020 Jul; 725():138524. PubMed ID: 32302854 [TBL] [Abstract][Full Text] [Related]
33. Swine digestate treatment by prior nitrogen-starved Chlorella vulgaris: The effect of over-compensation strategy on microalgal biomass production and nutrient removal. Ran C; Zhou X; Yao C; Zhang Y; Kang W; Liu X; Herbert C; Xie T Sci Total Environ; 2021 May; 768():144462. PubMed ID: 33454469 [TBL] [Abstract][Full Text] [Related]
34. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. Lv J; Liu Y; Feng J; Liu Q; Nan F; Xie S Bioresour Technol; 2018 Sep; 264():311-318. PubMed ID: 29857286 [TBL] [Abstract][Full Text] [Related]
35. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. Wang H; Wu B; Jiang N; Liu J; Zhao Y; Xu J; Wang H Bioresour Technol; 2023 Feb; 370():128483. PubMed ID: 36513303 [TBL] [Abstract][Full Text] [Related]
36. Fluoxetine and Nutrients Removal from Aqueous Solutions by Phycoremediation. Silva ADM; Fernandes DF; Figueiredo SA; Freitas OM; Delerue-Matos C Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627618 [TBL] [Abstract][Full Text] [Related]
37. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235 [TBL] [Abstract][Full Text] [Related]
38. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production. Ma X; Zheng H; Addy M; Anderson E; Liu Y; Chen P; Ruan R Bioresour Technol; 2016 May; 207():252-61. PubMed ID: 26894565 [TBL] [Abstract][Full Text] [Related]
39. Optimizing phosphorus removal for municipal wastewater post-treatment with Chlorella vulgaris. Lavrinovičs A; Mežule L; Cacivkins P; Juhna T J Environ Manage; 2022 Dec; 324():116313. PubMed ID: 36191504 [TBL] [Abstract][Full Text] [Related]
40. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Adamczyk M; Lasek J; Skawińska A Appl Biochem Biotechnol; 2016 Aug; 179(7):1248-61. PubMed ID: 27052208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]