These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33561792)

  • 1. Study on the characteristics of dissolution and acid production in waste activated sludge: Focusing on the pretreatment of thermal-alkali with rhamnolipid.
    Zhao P; Liu Y; Dou C; Zhu N; Wan P; Wang X
    Bioresour Technol; 2021 May; 327():124796. PubMed ID: 33561792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of rhamnolipid pretreatment on DOM dissolution characteristics and anaerobic fermentation acid production of waste activated sludge.
    Dou C; Liu Y; Li S; Sun R; Zhao P
    Environ Technol; 2024 Feb; 45(6):1203-1214. PubMed ID: 36269674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of dissolution and fermentation acid production of rhamnolipid-alkali-heat synergistic pretreatment of sludge.
    Hao S; Yuling L; Penghe Z; Yang J
    Chemosphere; 2022 Nov; 306():135607. PubMed ID: 35810874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Dissolution Characteristics of Excess Sludge by Low-Temperature Thermal Hydrolysis and Acid Production by Fermentation.
    Penghe Z; Yuling L; Chuanchuan D; Pengliang W
    ACS Omega; 2020 Oct; 5(40):26101-26109. PubMed ID: 33073137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment.
    Xin X; She Y; Hong J
    Bioresour Technol; 2021 Jan; 320(Pt A):124287. PubMed ID: 33120057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid.
    Xu Q; Liu X; Fu Y; Li Y; Wang D; Wang Q; Liu Y; An H; Zhao J; Wu Y; Li X; Yang Q; Zeng G
    Bioresour Technol; 2018 Nov; 267():141-148. PubMed ID: 30014992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant rhamnolipid promotes anaerobic codigestion of excess sludge and plant waste.
    Wang Y; Zhou X; Dai B; Zhu X
    Water Sci Technol; 2021 Nov; 84(9):2519-2529. PubMed ID: 34810328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced hydrolysis and acidification of waste activated sludge by biosurfactant rhamnolipid.
    Yi X; Luo K; Yang Q; Li XM; Deng WG; Cheng HB; Wang ZL; Zeng GM
    Appl Biochem Biotechnol; 2013 Nov; 171(6):1416-28. PubMed ID: 23955350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge.
    Li X; Sui K; Zhang J; Liu X; Xu Q; Wang D; Yang Q
    Sci Total Environ; 2022 Feb; 806(Pt 1):150347. PubMed ID: 34563898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkaline thermal pretreatment of waste activated sludge for enhanced hydrogen production in microbial electrolysis cells.
    Wang H; Liu J; Zhang Z; Li J; Zhang H; Zhan Y
    J Environ Manage; 2021 Sep; 294():113000. PubMed ID: 34130135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis and decomposition of waste activated sludge with combined lysozyme and rhamnolipid treatment: Effect of pH.
    Liu G; Li X; Ma X; Ma L; Chen H
    Bioresour Technol; 2019 Dec; 293():122074. PubMed ID: 31491652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysorbate-80 pretreatment contributing to volatile fatty acids production associated microbial interactions via acidogenic fermentation of waste activated sludge.
    Ai X; Xin X; Wei W; Xie J; Hong J
    Bioresour Technol; 2022 Feb; 345():126488. PubMed ID: 34871722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing temperature for enhancing waste activated sludge decomposition in lysozyme and rhamnolipid pretreatment system.
    Li X; Xie H; Liu G; Zhang R; Ma X; Chen H
    Bioresour Technol; 2021 Dec; 341():125868. PubMed ID: 34523578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment.
    Wu L; Zhang C; Hu H; Liu J; Duan T; Luo J; Qian G
    Bioresour Technol; 2017 Sep; 240():192-196. PubMed ID: 28343862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced production of short-chain fatty acids from sludge by thermal hydrolysis and acidogenic fermentation for organic resource recovery.
    Wen L; Huang XW; Li XY
    Sci Total Environ; 2022 Jul; 828():154389. PubMed ID: 35276155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic pretreatment of CaO and freezing/thawing to enhance volatile fatty acids recycling and dewaterability of waste activated sludge via anaerobic fermentation.
    She Y; Wei W; Ai X; Hong J; Xin X
    Chemosphere; 2021 Oct; 280():130939. PubMed ID: 34162110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-assisted thermal hydrolysis off waste activated sludge for improved dewaterability, organic release, and volatile fatty acid production.
    Shi X; Zhu L; Li B; Liang J; Li XY
    Waste Manag; 2021 Apr; 124():339-347. PubMed ID: 33662765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses.
    Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q
    Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhamnolipid increases H
    Fu Q; Liu X; He D; Li X; Li C; Du M; Wang Y; Long S; Wang D
    Water Res; 2022 Aug; 221():118742. PubMed ID: 35752095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.