These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Examining the Capacity of Text Mining and Software Metrics in Vulnerability Prediction. Kalouptsoglou I; Siavvas M; Kehagias D; Chatzigeorgiou A; Ampatzoglou A Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626536 [TBL] [Abstract][Full Text] [Related]
3. An Improved Vulnerability Exploitation Prediction Model with Novel Cost Function and Custom Trained Word Vector Embedding. Hoque MS; Jamil N; Amin N; Lam KY Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34202977 [TBL] [Abstract][Full Text] [Related]
4. A systematic review of fuzzing based on machine learning techniques. Wang Y; Jia P; Liu L; Huang C; Liu Z PLoS One; 2020; 15(8):e0237749. PubMed ID: 32810156 [TBL] [Abstract][Full Text] [Related]
6. FastEmbed: Predicting vulnerability exploitation possibility based on ensemble machine learning algorithm. Fang Y; Liu Y; Huang C; Liu L PLoS One; 2020; 15(2):e0228439. PubMed ID: 32027693 [TBL] [Abstract][Full Text] [Related]
7. Seminal quality prediction using data mining methods. Sahoo AJ; Kumar Y Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862 [TBL] [Abstract][Full Text] [Related]
8. Open source software security vulnerability detection based on dynamic behavior features. Li Y; Ma L; Shen L; Lv J; Zhang P PLoS One; 2019; 14(8):e0221530. PubMed ID: 31442278 [TBL] [Abstract][Full Text] [Related]
9. Feature selection for helpfulness prediction of online product reviews: An empirical study. Du J; Rong J; Michalska S; Wang H; Zhang Y PLoS One; 2019; 14(12):e0226902. PubMed ID: 31869404 [TBL] [Abstract][Full Text] [Related]
10. Deep learning-based solution for smart contract vulnerabilities detection. Tang X; Du Y; Lai A; Zhang Z; Shi L Sci Rep; 2023 Nov; 13(1):20106. PubMed ID: 37973832 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study. Verma AK; Pal S; Kumar S Appl Biochem Biotechnol; 2020 Feb; 190(2):341-359. PubMed ID: 31350666 [TBL] [Abstract][Full Text] [Related]
12. Interpretability and Class Imbalance in Prediction Models for Pain Volatility in Manage My Pain App Users: Analysis Using Feature Selection and Majority Voting Methods. Rahman QA; Janmohamed T; Clarke H; Ritvo P; Heffernan J; Katz J JMIR Med Inform; 2019 Nov; 7(4):e15601. PubMed ID: 31746764 [TBL] [Abstract][Full Text] [Related]
13. On the adequacy of static analysis warnings with respect to code smell prediction. Pecorelli F; Lujan S; Lenarduzzi V; Palomba F; De Lucia A Empir Softw Eng; 2022; 27(3):64. PubMed ID: 35370447 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the security of patients' portals and websites by detecting malicious web crawlers using machine learning techniques. Hosseini N; Fakhar F; Kiani B; Eslami S Int J Med Inform; 2019 Dec; 132():103976. PubMed ID: 31606554 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI. An Y; Wang J; Li C; Leier A; Marquez-Lago T; Wilksch J; Zhang Y; Webb GI; Song J; Lithgow T Brief Bioinform; 2018 Jan; 19(1):148-161. PubMed ID: 27777222 [TBL] [Abstract][Full Text] [Related]
16. A static analysis approach for Android permission-based malware detection systems. Mohamad Arif J; Ab Razak MF; Awang S; Tuan Mat SR; Ismail NSN; Firdaus A PLoS One; 2021; 16(9):e0257968. PubMed ID: 34591930 [TBL] [Abstract][Full Text] [Related]
17. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides. Pandey P; Patel V; George NV; Mallajosyula SS J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609 [TBL] [Abstract][Full Text] [Related]
18. A comparative study on feature selection for a risk prediction model for colorectal cancer. Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951 [TBL] [Abstract][Full Text] [Related]
19. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Manavalan B; Basith S; Shin TH; Wei L; Lee G Bioinformatics; 2019 Aug; 35(16):2757-2765. PubMed ID: 30590410 [TBL] [Abstract][Full Text] [Related]
20. Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma. Singh NP; Bapi RS; Vinod PK Comput Biol Med; 2018 Sep; 100():92-99. PubMed ID: 29990647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]