These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33562131)

  • 1. Selection of EMG Sensors Based on Motion Coordinated Analysis.
    Chen L; Liu X; Xuan B; Zhang J; Liu Z; Zhang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction and analysis of muscle functional network for exoskeleton robot].
    Chen L; Zhang C; Song X; Zhang T; Liu X; Yang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):565-572. PubMed ID: 31441256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing Efficient EMG-Based Prosthetic Control Strategy.
    Li G; Samuel OW; Lin C; Asogbon MG; Fang P; Idowu PO
    Adv Exp Med Biol; 2019; 1101():149-166. PubMed ID: 31729675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques for Improving the Reliability of Prosthesis Wearer Muscle Signals Using Pressure and EMG Sensors.
    Shin JW; Eom SH; Lee CU; Lee EH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5882-5885. PubMed ID: 31947188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between socket pressure and EMG of two muscles in trans-femoral stumps during gait.
    Hong JH; Mun MS
    Prosthet Orthot Int; 2005 Apr; 29(1):59-72. PubMed ID: 16180378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online adaptive neural control of a robotic lower limb prosthesis.
    Spanias JA; Simon AM; Finucane SB; Perreault EJ; Hargrove LJ
    J Neural Eng; 2018 Feb; 15(1):016015. PubMed ID: 29019467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous motion decoding from EMG using independent component analysis and adaptive model training.
    Zhang Q; Xiong C; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5068-71. PubMed ID: 25571132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rechargeable wireless EMG sensor for prosthetic control.
    Lichter PA; Lange EH; Riehle TH; Anderson SM; Hedin DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5074-6. PubMed ID: 21095801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Muscle Selection for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Kwon Y; Dwivedi A; McDaid AJ; Liarokapis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1672-1675. PubMed ID: 30440716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of Upper Limb Action Intention Based on IMU.
    Cui JW; Li ZG; Du H; Yan BY; Lu PD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects.
    Bakshi K; Pramanik R; Manjunatha M; Kumar CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG and ENG-envelope pattern recognition for prosthetic hand control.
    Noce E; Dellacasa Bellingegni A; Ciancio AL; Sacchetti R; Davalli A; Guglielmelli E; Zollo L
    J Neurosci Methods; 2019 Jan; 311():38-46. PubMed ID: 30316891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study.
    Cipriani C; Sassu R; Controzzi M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Rehabilitation Training System Based on Surface EMG Feature Extraction and Analysis.
    Meng Q; Zhang J; Yang X
    J Med Syst; 2019 Jan; 43(3):48. PubMed ID: 30666419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.
    Farmer S; Silver-Thorn S; Voglewede P; Beardsley SA
    J Neural Eng; 2014 Oct; 11(5):056027. PubMed ID: 25246110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.