These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33562424)

  • 21. Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor.
    Yu J; Wu J; Wang H; Zhou A; Huang C; Bai H; Li L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4724-9. PubMed ID: 26830192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress on Flexible and Wearable Supercapacitors.
    Xue Q; Sun J; Huang Y; Zhu M; Pei Z; Li H; Wang Y; Li N; Zhang H; Zhi C
    Small; 2017 Dec; 13(45):. PubMed ID: 28941073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors.
    Yang Y; Zhang D; Liu Y; Shen L; Zhu T; Xu X; Zheng J; Gong X
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34168-34177. PubMed ID: 34260215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Self-Healing PVA-Linked Phytic Acid Hydrogel-Based Electrolyte for High-Performance Flexible Supercapacitors.
    Zhao J; Lu Y; Liu Y; Liu L; Yin J; Sun B; Wang G; Zhang Y
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.
    Ma J; Liu W; Zhang S; Ma Z; Song P; Yang F; Wang X
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29891767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EGaIn Fiber Enabled Highly Flexible Supercapacitors.
    Duan M; Ren Y; Sun X; Zhu X; Wang X; Sheng L; Liu J
    ACS Omega; 2021 Sep; 6(38):24444-24449. PubMed ID: 34604626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors.
    Cheng Y; Lu S; Zhang H; Varanasi CV; Liu J
    Nano Lett; 2012 Aug; 12(8):4206-11. PubMed ID: 22823066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MoS
    Pi X; Sun X; Wang R; Chen C; Wu S; Zhan F; Zhong J; Wang Q; Ken Ostrikov K
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):227-237. PubMed ID: 36152579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural engineering of electrodes for flexible energy storage devices.
    Sun Y; Chong WG
    Mater Horiz; 2023 Jul; 10(7):2373-2397. PubMed ID: 37144354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers.
    Zhao Z; Xia K; Hou Y; Zhang Q; Ye Z; Lu J
    Chem Soc Rev; 2021 Nov; 50(22):12702-12743. PubMed ID: 34643198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards flexible solid-state supercapacitors for smart and wearable electronics.
    Dubal DP; Chodankar NR; Kim DH; Gomez-Romero P
    Chem Soc Rev; 2018 Mar; 47(6):2065-2129. PubMed ID: 29399689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laser-machined micro-supercapacitors: from microstructure engineering to smart integrated systems.
    Li H; Luo J; Ding S; Ding J
    Nanoscale; 2024 Jul; ():. PubMed ID: 38976354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wearable Wire-Shaped Symmetric Supercapacitors Based on Activated Carbon-Coated Graphite Fibers.
    Wang C; Hu K; Li W; Wang H; Li H; Zou Y; Zhao C; Li Z; Yu M; Tan P; Li Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34302-34310. PubMed ID: 30209940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printed supercapacitors: materials, printing and applications.
    Zhang YZ; Wang Y; Cheng T; Yao LQ; Li X; Lai WY; Huang W
    Chem Soc Rev; 2019 Jun; 48(12):3229-3264. PubMed ID: 31119231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.
    Li X; Wang J; Zhao Y; Ge F; Komarneni S; Cai Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25905-25914. PubMed ID: 27618744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes.
    Wang W; Cao J; Yu J; Tian F; Luo X; Hao Y; Huang J; Wang F; Zhou W; Xu J; Liu X; Yang H
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elastic Fiber Supercapacitors for Wearable Energy Storage.
    Qin S; Seyedin S; Zhang J; Wang Z; Yang F; Liu Y; Chen J; Razal JM
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800103. PubMed ID: 29774612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Built-In Piezoelectric Nanogenerators Promote Sustainable and Flexible Supercapacitors: A Review.
    Meng S; Wang N; Cao X
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials.
    Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.