BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 33562559)

  • 1. Graphene-Based Scaffolds for Regenerative Medicine.
    Bellet P; Gasparotto M; Pressi S; Fortunato A; Scapin G; Mba M; Menna E; Filippini F
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Update on Graphene-Based Nanomaterials for Neural Growth and Central Nervous System Regeneration.
    Tupone MG; Panella G; d'Angelo M; Castelli V; Caioni G; Catanesi M; Benedetti E; Cimini A
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels.
    Zhou M; Lozano N; Wychowaniec JK; Hodgkinson T; Richardson SM; Kostarelos K; Hoyland JA
    Acta Biomater; 2019 Sep; 96():271-280. PubMed ID: 31325577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial.
    Tonellato M; Piccione M; Gasparotto M; Bellet P; Tibaudo L; Vicentini N; Bergantino E; Menna E; Vitiello L; Di Liddo R; Filippini F
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When stem cells meet graphene: Opportunities and challenges in regenerative medicine.
    Kenry ; Lee WC; Loh KP; Lim CT
    Biomaterials; 2018 Feb; 155():236-250. PubMed ID: 29195230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application.
    Niknam Z; Hosseinzadeh F; Shams F; Fath-Bayati L; Nuoroozi G; Mohammadi Amirabad L; Mohebichamkhorami F; Khakpour Naeimi S; Ghafouri-Fard S; Zali H; Tayebi L; Rasmi Y
    J Biomed Mater Res A; 2022 Oct; 110(10):1695-1721. PubMed ID: 35762460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells.
    Ikram R; Shamsuddin SAA; Mohamed Jan B; Abdul Qadir M; Kenanakis G; Stylianakis MM; Anastasiadis SH
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced Graphene Oxide-Extracellular Matrix Scaffolds as a Multifunctional and Highly Biocompatible Nanocomposite for Wound Healing: Insights into Characterization and Electroconductive Potential.
    Cifuentes J; Muñoz-Camargo C; Cruz JC
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine.
    Raslan A; Saenz Del Burgo L; Ciriza J; Pedraz JL
    Int J Pharm; 2020 Apr; 580():119226. PubMed ID: 32179151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Based Materials in Neural Tissue Regeneration.
    Aydin T; Gurcan C; Taheri H; Yilmazer A
    Adv Exp Med Biol; 2018; 1107():129-142. PubMed ID: 29882208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system.
    Akhavan O
    J Mater Chem B; 2016 May; 4(19):3169-3190. PubMed ID: 32263253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, Properties, and Application of Graphene-Based Materials in Tissue Engineering Scaffolds.
    Xue W; Du J; Li Q; Wang Y; Lu Y; Fan J; Yu S; Yang Y
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1121-1136. PubMed ID: 34751592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field.
    Guazzo R; Gardin C; Bellin G; Sbricoli L; Ferroni L; Ludovichetti FS; Piattelli A; Antoniac I; Bressan E; Zavan B
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29783786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials.
    Mansouri N; Al-Sarawi S; Losic D; Mazumdar J; Clark J; Gronthos S; O'Hare Doig R
    Biotechnol Bioeng; 2021 Nov; 118(11):4217-4230. PubMed ID: 34264518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation.
    Patel A; Xue Y; Mukundan S; Rohan LC; Sant V; Stolz DB; Sant S
    Ann Biomed Eng; 2016 Jun; 44(6):2036-48. PubMed ID: 26983841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges.
    Zheng Y; Hong X; Wang J; Feng L; Fan T; Guo R; Zhang H
    Adv Healthc Mater; 2021 Apr; 10(7):e2001743. PubMed ID: 33511775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology in the regulation of stem cell behavior.
    Wu KC; Tseng CL; Wu CC; Kao FC; Tu YK; C So E; Wang YK
    Sci Technol Adv Mater; 2013 Oct; 14(5):054401. PubMed ID: 27877605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Based Nanocomposites for Neural Tissue Engineering.
    Bei HP; Yang Y; Zhang Q; Tian Y; Luo X; Yang M; Zhao X
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30781759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.