BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33562562)

  • 1. Plumbagin, a Potent Naphthoquinone from
    Rahman-Soad A; Dávila-Lara A; Paetz C; Mithöfer A
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33562562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory.
    Dávila-Lara A; Rahman-Soad A; Reichelt M; Mithöfer A
    PLoS One; 2021; 16(10):e0258235. PubMed ID: 34679089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture.
    Raj G; Kurup R; Hussain AA; Baby S
    J Exp Bot; 2011 Nov; 62(15):5429-36. PubMed ID: 21862483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells.
    De U; Son JY; Jeon Y; Ha SY; Park YJ; Yoon S; Ha KT; Choi WS; Lee BM; Kim IS; Kwak JH; Kim HS
    Food Chem Toxicol; 2019 Jan; 123():492-500. PubMed ID: 30458268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomics Analysis Reveals Tissue-Specific Metabolite Compositions in Leaf Blade and Traps of Carnivorous
    Dávila-Lara A; Rodríguez-López CE; O'Connor SE; Mithöfer A
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575527
    [No Abstract]   [Full Text] [Related]  

  • 6. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.
    Rischer H; Hamm A; Bringmann G
    Phytochemistry; 2002 Mar; 59(6):603-9. PubMed ID: 11867092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactivity-guided isolation and structural characterization of the antifungal compound, plumbagin, from Nepenthes gracilis.
    Gwee PS; Khoo KS; Ong HC; Sit NW
    Pharm Biol; 2014 Dec; 52(12):1526-31. PubMed ID: 25026359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of some plant oils alone and/or combined with different insecticides on the cotton leaf-worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt.
    Mesbah HA; Mourad AK; Rokaia AZ
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):305-28. PubMed ID: 17385497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.
    Buch F; Rott M; Rottloff S; Paetz C; Hilke I; Raessler M; Mithöfer A
    Ann Bot; 2013 Mar; 111(3):375-83. PubMed ID: 23264234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae.
    Rodrigues AM; de Paula JE; Roblot F; Fournet A; Espíndola LS
    Fitoterapia; 2005 Dec; 76(7-8):755-7. PubMed ID: 16229968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of plant-derived compounds on larvae of a blow fly species that causes secondary myiases: laboratory studies.
    Green PW; Simmonds MS; Blaney WM; Khambay BP
    Phytother Res; 2004 Jul; 18(7):538-41. PubMed ID: 15305312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and insect antifeedant activity of plumbagin derivatives with the amino acid moiety.
    Sreelatha T; Hymavathi A; Babu KS; Murthy JM; Pathipati UR; Rao JM
    J Agric Food Chem; 2009 Jul; 57(14):6090-4. PubMed ID: 19530696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within-plant distribution of 1,4-benzoxazin-3-ones contributes to herbivore niche differentiation in maize.
    Köhler A; Maag D; Veyrat N; Glauser G; Wolfender JL; Turlings TC; Erb M
    Plant Cell Environ; 2015 Jun; 38(6):1081-93. PubMed ID: 25293400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larvicidal activity of naturally occurring naphthoquinones and derivatives against the West Nile virus vector Culex pipiens.
    Michaelakis A; Strongilos AT; Bouzas EA; Koliopoulos G; Couladouros EA
    Parasitol Res; 2009 Feb; 104(3):657-62. PubMed ID: 18998168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenoloxidase, an effective bioactivity target for botanical insecticide screening from green walnut husks.
    Hu W; Du W; Bai S; Lv S; Chen G
    Nat Prod Res; 2018 Dec; 32(23):2848-2851. PubMed ID: 28931324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract.
    Huang YH; Lien Y; Chen JH; Lin ES; Huang CY
    Biochimie; 2020; 171-172():124-135. PubMed ID: 32147511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifeedant effect of Jatropha gossypifolia senescent leaf extract on Spodoptera exigua.
    Panvongsa W; Preedawan T; Boonsoong B; Bullangpoti V
    Commun Agric Appl Biol Sci; 2012; 77(4):715-9. PubMed ID: 23885441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oviposition by
    Geuss D; Lortzing T; Schwachtje J; Kopka J; Steppuhn A
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on larvicidal activity of weed extracts against Spodoptera litura.
    Kandagal AS; Khetagoudar MC
    J Environ Biol; 2013 Mar; 34(2):253-7. PubMed ID: 24620588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb.
    Sreelatha T; Hymavathi A; Murthy JM; Rani PU; Rao JM; Babu KS
    Bioorg Med Chem Lett; 2010 May; 20(9):2974-7. PubMed ID: 20347303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.