These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33562591)

  • 1. Analysis of the Properties of Fractional Heat Conduction in Porous Electrodes of Lithium-Ion Batteries.
    Lu X; Li H; Chen N
    Entropy (Basel); 2021 Feb; 23(2):. PubMed ID: 33562591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the critical external heat leading to the failure of lithium-ion batteries.
    Tang W; Tam WC; Yuan L; Dubaniewicz T; Thomas R; Soles J
    Appl Therm Eng; 2020 Oct; 179():. PubMed ID: 34434069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sensor-Fault-Estimation Method for Lithium-Ion Batteries in Electric Vehicles.
    Lan T; Gao ZW; Yin H; Liu Y
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical estimation of heat distribution from the implantable battery system of an undulation pump LVAD.
    Okamoto E; Makino T; Nakamura M; Tanaka S; Chinzei T; Abe Y; Isoyama T; Saito I; Mochizuki S; Imachi K; Inoue Y; Mitamura Y
    J Artif Organs; 2006; 9(2):77-83. PubMed ID: 16807809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the electrical-thermal properties of lithium-ion battery materials in the NCM622/graphite system.
    Li H; Wu X; Fang S; Liu M; Bi S; Zhao T; Zhang X
    Front Chem; 2024; 12():1403696. PubMed ID: 38680457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries.
    Yang Q; Xu J; Cao B; Li X
    PLoS One; 2017; 12(2):e0172424. PubMed ID: 28212405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Peng J; Li H
    Waste Manag Res; 2021 Jan; 39(1):146-155. PubMed ID: 32938335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter.
    Jhu CY; Wang YW; Shu CM; Chang JC; Wu HC
    J Hazard Mater; 2011 Aug; 192(1):99-107. PubMed ID: 21612866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.
    Pan J; Li H; Sun H; Zhang Y; Wang L; Liao M; Sun X; Peng H
    Small; 2018 Feb; 14(6):. PubMed ID: 29205922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries.
    Jia L; Wang D; Yin T; Li X; Li L; Dai Z; Zheng L
    ACS Omega; 2022 May; 7(17):14562-14570. PubMed ID: 35557703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Effect and Mechanism Analysis of Flame-Retardant Modified Polymer Electrolyte for Lithium-Ion Battery.
    Wu ZH; Huang AC; Tang Y; Yang YP; Liu YC; Li ZP; Zhou HL; Huang CF; Xing ZX; Shu CM; Jiang JC
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34064015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon and Graphene Coatings for the Thermal Management of Sustainable LMP Batteries for Automotive Applications.
    Sequino L; Sebastianelli G; Vaglieco BM
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Li-ion battery cooling system integrates in nano-fluid environment.
    Tran L; Lopez J; Lopez J; Uriostegui A; Barrera A; Wiggins N
    Appl Nanosci; 2017; 7(1):25-29. PubMed ID: 32215234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review on renewable battery thermal management system using heat pipes.
    Afzal A; Abdul Razak RK; Mohammed Samee AD; Kumar R; Ağbulut Ü; Park SG
    J Therm Anal Calorim; 2023 May; ():1-40. PubMed ID: 37361725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.
    Cai W; Zhang Y; Li J; Sun Y; Cheng H
    ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations of Li-Ion Battery Thermal Management Systems Based on Heat Pipes: A Review.
    Wu H; Niu M; Shao Y; Wang M; Li M; Liu X; Li Z
    ACS Omega; 2024 Jan; 9(1):97-116. PubMed ID: 38222571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.