BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 33562657)

  • 41. A low cost kinect-based virtual rehabilitation system for inpatient rehabilitation of the upper limb in patients with subacute stroke: A randomized, double-blind, sham-controlled pilot trial.
    Kim WS; Cho S; Park SH; Lee JY; Kwon S; Paik NJ
    Medicine (Baltimore); 2018 Jun; 97(25):e11173. PubMed ID: 29924029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials.
    Mekbib DB; Han J; Zhang L; Fang S; Jiang H; Zhu J; Roe AW; Xu D
    Brain Inj; 2020 Mar; 34(4):456-465. PubMed ID: 32064964
    [No Abstract]   [Full Text] [Related]  

  • 43. Effects of sensory cueing in virtual motor rehabilitation. A review.
    Palacios-Navarro G; Albiol-Pérez S; García-Magariño García I
    J Biomed Inform; 2016 Apr; 60():49-57. PubMed ID: 26826454
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of Virtual Reality Intervention on Neural Plasticity in Stroke Rehabilitation: A Systematic Review.
    Hao J; Xie H; Harp K; Chen Z; Siu KC
    Arch Phys Med Rehabil; 2022 Mar; 103(3):523-541. PubMed ID: 34352269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Older Adults With Cognitive and/or Physical Impairments Can Benefit From Immersive Virtual Reality Experiences: A Feasibility Study.
    Appel L; Appel E; Bogler O; Wiseman M; Cohen L; Ein N; Abrams HB; Campos JL
    Front Med (Lausanne); 2019; 6():329. PubMed ID: 32010701
    [No Abstract]   [Full Text] [Related]  

  • 46. Use of client-centered virtual reality in rehabilitation after stroke: a feasibility study.
    Aramaki AL; Sampaio RF; Cavalcanti A; Dutra FCMSE
    Arq Neuropsiquiatr; 2019; 77(9):622-631. PubMed ID: 31553392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Virtual Reality Applications for Neurological Disease: A Review.
    Schiza E; Matsangidou M; Neokleous K; Pattichis CS
    Front Robot AI; 2019; 6():100. PubMed ID: 33501115
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Virtual reality in the rehabilitation of the upper limb after stroke: the user's perspective.
    Crosbie JH; Lennon S; McNeill MD; McDonough SM
    Cyberpsychol Behav; 2006 Apr; 9(2):137-41. PubMed ID: 16640466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke.
    Yates M; Kelemen A; Sik Lanyi C
    Brain Inj; 2016; 30(7):855-63. PubMed ID: 27029647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Immersive and Non-Immersive Virtual Reality on the Static and Dynamic Balance of Stroke Patients: A Systematic Review and Meta-Analysis.
    Garay-Sánchez A; Suarez-Serrano C; Ferrando-Margelí M; Jimenez-Rejano JJ; Marcén-Román Y
    J Clin Med; 2021 Sep; 10(19):. PubMed ID: 34640491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Virtual reality rehabilitation for unilateral spatial neglect: A systematic review of immersive, semi-immersive and non-immersive techniques.
    Salatino A; Zavattaro C; Gammeri R; Cirillo E; Piatti ML; Pyasik M; Serra H; Pia L; Geminiani G; Ricci R
    Neurosci Biobehav Rev; 2023 Sep; 152():105248. PubMed ID: 37247829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applications of Head-Mounted Displays for Virtual Reality in Adult Physical Rehabilitation: A Scoping Review.
    Saldana D; Neureither M; Schmiesing A; Jahng E; Kysh L; Roll SC; Liew SL
    Am J Occup Ther; 2020; 74(5):7405205060p1-7405205060p15. PubMed ID: 32804624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficacy of virtual reality therapy in ideomotor apraxia rehabilitation: A case report.
    Park W; Kim J; Kim M
    Medicine (Baltimore); 2021 Jul; 100(28):e26657. PubMed ID: 34260571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals with Parkinson's disease.
    Kim A; Darakjian N; Finley JM
    J Neuroeng Rehabil; 2017 Feb; 14(1):16. PubMed ID: 28222783
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Use of Virtual Reality Through Head-Mounted Display on Balance and Gait in Older Adults: A Scoping Review.
    Delgado F; Der Ananian C
    Games Health J; 2021 Feb; 10(1):2-12. PubMed ID: 32598189
    [No Abstract]   [Full Text] [Related]  

  • 56. Feasibility and user-experience of virtual reality in neuropsychological assessment following stroke.
    Spreij LA; Visser-Meily JMA; Sibbel J; Gosselt IK; Nijboer TCW
    Neuropsychol Rehabil; 2022 May; 32(4):499-519. PubMed ID: 33138703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining levodopa and virtual reality-based therapy for rehabilitation of the upper limb after acute stroke: pilot study Part II.
    Samuel GS; Oey NE; Choo M; Ju H; Chan WY; Kok S; Ge Y; Van Dongen AM; Ng YS
    Singapore Med J; 2017 Oct; 58(10):610-617. PubMed ID: 27311739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of semi-immersive virtual reality therapy on standing balance and upright mobility function in individuals with chronic incomplete spinal cord injury: A preliminary study.
    An CM; Park YH
    J Spinal Cord Med; 2018 Mar; 41(2):223-229. PubMed ID: 28880130
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis.
    Li Z; Han XG; Sheng J; Ma SJ
    Clin Rehabil; 2016 May; 30(5):432-40. PubMed ID: 26141808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of virtual reality immersive training with computerized cognitive training on cognitive function and activities of daily living performance in patients with acute stage stroke: A preliminary randomized controlled trial.
    Cho DR; Lee SH
    Medicine (Baltimore); 2019 Mar; 98(11):e14752. PubMed ID: 30882644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.