These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33562676)

  • 1. Embedded Computation Architectures for Autonomy in Unmanned Aircraft Systems (UAS).
    Mejias L; Diguet JP; Dezan C; Campbell D; Kok J; Coppin G
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cyber-Physical-Human System for One-to-Many UAS Operations: Cognitive Load Analysis.
    Planke LJ; Lim Y; Gardi A; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the Vertical Structure of Weather-Induced Mission Costs for Small UAS.
    Bird JJ; Richardson SJ; Langelaan JW
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Factors Contributions to the Development of Standards for Displays of Unmanned Aircraft Systems in Support of Detect-and-Avoid.
    Vu KL; Rorie RC; Fern L; Shively RJ
    Hum Factors; 2020 Jun; 62(4):505-515. PubMed ID: 32286903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sense and avoid requirements for unmanned aircraft systems using a target level of safety approach.
    Melnyk R; Schrage D; Volovoi V; Jimenez H
    Risk Anal; 2014 Oct; 34(10):1894-906. PubMed ID: 24724619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor Networks for Aerospace Human-Machine Systems.
    Pongsakornsathien N; Lim Y; Gardi A; Hilton S; Planke L; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vigilance and Automation Dependence in Operation of Multiple Unmanned Aerial Systems (UAS): A Simulation Study.
    Wohleber RW; Matthews G; Lin J; Szalma JL; Calhoun GL; Funke GJ; Chiu CP; Ruff HA
    Hum Factors; 2019 May; 61(3):488-505. PubMed ID: 30265579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.
    Van Tilburg C
    Wilderness Environ Med; 2017 Jun; 28(2):116-118. PubMed ID: 28318989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys.
    Barnas A; Newman R; Felege CJ; Corcoran MP; Hervey SD; Stechmann TJ; Rockwell RF; Ellis-Felege SN
    Ecol Evol; 2018 Jan; 8(2):1328-1338. PubMed ID: 29375801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned aerial survey of elephants.
    Vermeulen C; Lejeune P; Lisein J; Sawadogo P; Bouché P
    PLoS One; 2013; 8(2):e54700. PubMed ID: 23405088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications.
    Vidal I; Bellavista P; Sanchez-Aguero V; Garcia-Reinoso J; Valera F; Nogales B; Azcorra A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturity Levels of Public Safety Applications using Unmanned Aerial Systems: a Review.
    Stampa M; Sutorma A; Jahn U; Thiem J; Wolff C; Röhrig C
    J Intell Robot Syst; 2021; 103(1):16. PubMed ID: 34456505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.
    Cooper AJ; Redman CA; Stoneham DM; Gonzalez LF; Etse VK
    Sensors (Basel); 2015 Aug; 15(9):21537-53. PubMed ID: 26343680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operator selection for unmanned aerial systems: comparing video game players and pilots.
    McKinley RA; McIntire LK; Funke MA
    Aviat Space Environ Med; 2011 Jun; 82(6):635-42. PubMed ID: 21702315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility Analysis of LTE-Based UAS Navigation in Deep Urban Areas and DSRC Augmentation.
    Kim E; Shin Y
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.
    Scannapieco AF; Renga A; Moccia A
    Sensors (Basel); 2015 Jan; 15(2):2309-35. PubMed ID: 25621606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.
    Mulero-Pázmány M; Jenni-Eiermann S; Strebel N; Sattler T; Negro JJ; Tablado Z
    PLoS One; 2017; 12(6):e0178448. PubMed ID: 28636611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of autonomous unmanned aircraft systems for mosquito control.
    Williams GM; Wang Y; Suman DS; Unlu I; Gaugler R
    PLoS One; 2020; 15(9):e0235548. PubMed ID: 32946475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ranges of Injury Risk Associated with Impact from Unmanned Aircraft Systems.
    Campolettano ET; Bland ML; Gellner RA; Sproule DW; Rowson B; Tyson AM; Duma SM; Rowson S
    Ann Biomed Eng; 2017 Dec; 45(12):2733-2741. PubMed ID: 28913606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaming experience predicts UAS operator performance and workload in simulated search and rescue missions.
    Ferraro JC; Mouloua M; Mangos PM; Matthews G
    Ergonomics; 2022 Dec; 65(12):1659-1671. PubMed ID: 35297326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.