These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33562712)

  • 1. Autonomous Water Quality Monitoring and Water Surface Cleaning for Unmanned Surface Vehicle.
    Chang HC; Hsu YL; Hung SS; Ou GR; Wu JR; Hsu C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Experiments of a Water Color Remote Sensing-Oriented Unmanned Surface Vehicle.
    Li Y; Tian L; Li W; Li J; Wei A; Li S; Tong R
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural network based obstacle detection for unmanned surface vehicle.
    Ma LY; Xie W; Huang HB
    Math Biosci Eng; 2019 Nov; 17(1):845-861. PubMed ID: 31731381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle.
    Cho HJ; Jeong SK; Ji DH; Tran NH; Vu MT; Choi HS
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fusion Algorithm of Object Detection and Tracking for Unmanned Surface Vehicles.
    Zhou Z; Hu X; Li Z; Jing Z; Qu C
    Front Neurorobot; 2022; 16():808147. PubMed ID: 35574226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote collection of microorganisms at two depths in a freshwater lake using an unmanned surface vehicle (USV).
    Powers C; Hanlon R; Schmale DG
    PeerJ; 2018; 6():e4290. PubMed ID: 29383287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated Sampling of Microorganisms Over Freshwater and Saltwater Environments Using an Unmanned Surface Vehicle (USV) and a Small Unmanned Aircraft System (sUAS).
    Powers CW; Hanlon R; Grothe H; Prussin AJ; Marr LC; Schmale DG
    Front Microbiol; 2018; 9():1668. PubMed ID: 30158904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on obstacle avoidance algorithm for unmanned ground vehicle based on multi-sensor information fusion.
    Lv J; Qu C; Du S; Zhao X; Yin P; Zhao N; Qu S
    Math Biosci Eng; 2021 Jan; 18(2):1022-1039. PubMed ID: 33757173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A USV-UAV Cooperative Trajectory Planning Algorithm with Hull Dynamic Constraints.
    Huang T; Chen Z; Gao W; Xue Z; Liu Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HMDCS-UV: A concept study of Hybrid Monitoring, Detection and Cleaning System for Unmanned Vehicles.
    Bella S; Belalem G; Belbachir A; Benfriha H
    J Intell Robot Syst; 2021; 102(2):44. PubMed ID: 34054219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs.
    Fan Y; Sun Z; Wang G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prototype Design and Experimental Evaluation of Autonomous Collaborative Communication System for Emerging Maritime Use Cases.
    Pokorny J; Ma K; Saafi S; Frolka J; Villa J; Gerasimenko M; Koucheryavy Y; Hosek J
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative USV-UAV marine search and rescue with visual navigation and reinforcement learning-based control.
    Wang Y; Liu W; Liu J; Sun C
    ISA Trans; 2023 Jun; 137():222-235. PubMed ID: 36801140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and development of orchard autonomous navigation spray system.
    Wang S; Song J; Qi P; Yuan C; Wu H; Zhang L; Liu W; Liu Y; He X
    Front Plant Sci; 2022; 13():960686. PubMed ID: 35979071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmanned Surface Vehicle Collision Avoidance Path Planning in Restricted Waters Using Multi-Objective Optimisation Complying with COLREGs.
    Gu Y; Rong Z; Tong H; Wang J; Si Y; Yang S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Water-Shore-Line Detection Method for USV Autonomous Navigation.
    Zou X; Xiao C; Zhan W; Zhou C; Xiu S; Yuan H
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Dynamic Behavior of Unmanned Surface Vehicle-Linked Unmanned Underwater Vehicle System for Underwater Exploration.
    Vu MT; Van M; Bui DHP; Do QT; Huynh TT; Lee SD; Choi HS
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Improved Particle Swarm Optimization for Navigation of Unmanned Surface Vehicles.
    Xin J; Li S; Sheng J; Zhang Y; Cui Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prototyping a low-cost open-source autonomous unmanned surface vehicle for real-time water quality monitoring and visualization.
    Ryu JH
    HardwareX; 2022 Oct; 12():e00369. PubMed ID: 36275398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Waterline Detection of Unmanned Surface Vehicles Based on Optical Images.
    Wei Y; Zhang Y
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.