BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33562762)

  • 21. The Chemical Profiles and Antioxidant Properties of Live Fruit or Vegetable Vinegars Available on the Polish Food Market.
    Melkis K; Jakubczyk K
    Foods; 2024 May; 13(10):. PubMed ID: 38790788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fermented Vinegars from Apple Peels, Raspberries, Rosehips, Lavender, Mint, and Rose Petals: The Composition, Antioxidant Power, and Genoprotective Abilities in Comparison to Acetic Macerates, Decoctions, and Tinctures.
    Kalemba-Drożdż M; Kwiecień I; Szewczyk A; Cierniak A; Grzywacz-Kisielewska A
    Antioxidants (Basel); 2020 Nov; 9(11):. PubMed ID: 33202797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?
    Fardet A
    Nutr Res Rev; 2010 Jun; 23(1):65-134. PubMed ID: 20565994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics and Discrimination of the Commercial Chinese Four Famous Vinegars Based on Flavor Compositions.
    Hu Y; Zheng C; Chen H; Wang C; Ren X; Fu S; Xu N; Li P; Song J; Wang C
    Foods; 2023 Apr; 12(9):. PubMed ID: 37174404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of in vivo toxicity, antioxidant and immunomodulatory activities of coconut, nipah and pineapple juice vinegars.
    Mohamad NE; Keong Yeap S; Beh BK; Romli MF; Yusof HM; Kristeen-Teo YW; Sharifuddin SA; Long K; Alitheen NB
    J Sci Food Agric; 2018 Jan; 98(2):534-540. PubMed ID: 28631270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemometric studies of vinegars from different raw materials and processes of production.
    Natera R; Castro R; de Valme García-Moreno M; Hernández MJ; García-Barroso C
    J Agric Food Chem; 2003 May; 51(11):3345-51. PubMed ID: 12744665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Value Compounds and Bioactivity of Rice Bran, Rice Bran Protein: A review.
    Kalita P; Ahmad AB; Sen S; Deka B; Hazarika QK; Kapil MJ; Pachuau L
    Recent Adv Food Nutr Agric; 2022 Dec; ():. PubMed ID: 36578259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioactive Compounds and Biological Activities of Sorghum Grains.
    Li Z; Zhao X; Zhang X; Liu H
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829151
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Noh YH; Lee DB; Lee YW; Pyo YH
    Prev Nutr Food Sci; 2020 Sep; 25(3):319-324. PubMed ID: 33083382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics.
    Kadiroğlu P
    J Sci Food Agric; 2018 Aug; 98(11):4121-4127. PubMed ID: 29393512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies.
    Masisi K; Beta T; Moghadasian MH
    Food Chem; 2016 Apr; 196():90-7. PubMed ID: 26593469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects.
    Yu X; Chu M; Chu C; Du Y; Shi J; Liu X; Liu Y; Zhang H; Zhang Z; Yan N
    Food Chem; 2020 Nov; 331():127293. PubMed ID: 32554311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic and bacterial conversions during sourdough fermentation.
    Gänzle MG
    Food Microbiol; 2014 Feb; 37():2-10. PubMed ID: 24230468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper Complexing Capacity and Trace Metal Content in Common and Balsamic Vinegars: Impact of Organic Matter.
    Karavoltsos S; Sakellari A; Sinanoglou VJ; Zoumpoulakis P; Plavšić M; Dassenakis M; Kalogeropoulos N
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alkylresorcinols in cereals and cereal products.
    Ross AB; Shepherd MJ; Schüpphaus M; Sinclair V; Alfaro B; Kamal-Eldin A; Aman P
    J Agric Food Chem; 2003 Jul; 51(14):4111-8. PubMed ID: 12822955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of the effects of optical spectrum and flow behaviour in determining the quality of dry fig, jujube, pomegranate, date palm and concentrated grape vinegars.
    Öztürk M; Yalçın O; Tekgündüz C; Tekgündüz E
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120792. PubMed ID: 34990917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical Determination of Antioxidant Capacity of Traditional Homemade Fruit Vinegars Produced with Double Spontaneous Fermentation.
    Chochevska M; Jančovska Seniceva E; Veličkovska SK; Naumova-Leţia G; Mirčeski V; Rocha JMF; Esatbeyoglu T
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the traditional organic vinegars by UV-VIS spectroscopy and rheology techniques.
    Yalçın O; Tekgündüz C; Öztürk M; Tekgündüz E
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118987. PubMed ID: 33032119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A colorimetric sensor array for recognition of 32 Chinese traditional cereal vinegars based on "turn-off/on" fluorescence of acid-sensitive quantum dots.
    Chen H; Wang S; Fu H; Chen F; Zhang L; Lan W; Yang J; Yang X; She Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117683. PubMed ID: 31685422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar.
    Ishihara S; Inaoka T; Nakamura T; Kimura K; Sekiyama Y; Tomita S
    J Biosci Bioeng; 2018 Jul; 126(1):53-62. PubMed ID: 29502941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.