BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33562769)

  • 1. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of pore network modeling for determination of two-phase transport in fibrous porous media.
    Huang X; Zhou W; Deng D
    Sci Rep; 2020 Nov; 10(1):20852. PubMed ID: 33257750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of diffusion parameters in functionalized silicas with modulated porosity. Part II: pore network modeling.
    Armatas GS; Petrakis DE; Pomonis PJ
    J Chromatogr A; 2005 May; 1074(1-2):61-9. PubMed ID: 15941040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impacts of Surface Microchannels on the Transport Properties of Porous Fibrous Media Using Stochastic Pore Network Modeling.
    Huang X; Zhou W; Deng D; Liu B; Jiang K
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity.
    Chen L; Zhang L; Kang Q; Viswanathan HS; Yao J; Tao W
    Sci Rep; 2015 Jan; 5():8089. PubMed ID: 25627247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures.
    Ma Q; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013025. PubMed ID: 26274287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study on the Through-Plane Permeability of Anisotropic Fibrous Porous Material by Fractal Stochastic Method.
    Xu Y; Xu L; Qiu S; Jiang Z; Rao B; Xu P
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography.
    Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored Porous Transport Layers for Optimal Oxygen Transport in Water Electrolyzers: Combined Stochastic Reconstruction and Lattice Boltzmann Method.
    Liu J; Li M; Yang Y; Schlüter N; Mimic D; Schröder D
    Chemphyschem; 2023 Sep; 24(18):e202300197. PubMed ID: 37402703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Parallel Coupled Lattice Boltzmann-Volume of Fluid Framework for Modeling Porous Media Evolution.
    Alihussein H; Geier M; Krafczyk M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation.
    Zeiser T; Bashoor-Zadeh M; Darabi A; Baroud G
    Proc Inst Mech Eng H; 2008 Feb; 222(2):185-94. PubMed ID: 18441754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches.
    Sadeghi MA; Agnaou M; Barralet J; Gostick J
    J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column.
    Meyers JJ; Liapis AI
    J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations.
    Gebäck T; Marucci M; Boissier C; Arnehed J; Heintz A
    J Phys Chem B; 2015 Apr; 119(16):5220-7. PubMed ID: 25835808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene Oxide/Aramid Nanofiber Electrodes for Supercapacitors.
    Aderyani S; Shah SA; Masoudi A; Green MJ; Lutkenhaus JL; Ardebili H
    ACS Nano; 2020 May; 14(5):5314-5323. PubMed ID: 32202753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled Lattice Boltzmann Modeling Framework for Pore-Scale Fluid Flow and Reactive Transport.
    Liu S; Barati R; Zhang C; Kazemi M
    ACS Omega; 2023 Apr; 8(15):13649-13669. PubMed ID: 37091418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal microstructure effects on effective gas diffusivity of a nanoporous medium based on pore-scale numerical simulations with lattice Boltzmann method.
    Hu B; Wang JG
    Phys Rev E; 2021 Dec; 104(6-2):065304. PubMed ID: 35030825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single- and two-phase flow simulation based on equivalent pore network extracted from micro-CT images of sandstone core.
    Song R; Liu J; Cui M
    Springerplus; 2016; 5(1):817. PubMed ID: 27390657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Effective Diffusivity of Porous Media from Images by Deep Learning.
    Wu H; Fang WZ; Kang Q; Tao WQ; Qiao R
    Sci Rep; 2019 Dec; 9(1):20387. PubMed ID: 31892713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.