These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33562855)

  • 1. Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation.
    Sasaki N; Sugenami E
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-based Centrifugal Microfluidic Device for Size-controllable Formation of Monodisperse Microdroplets.
    Morita M; Yamashita H; Hayakawa M; Onoe H; Takinoue M
    J Vis Exp; 2016 Feb; (108):53860. PubMed ID: 26967046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis.
    Hattori S; Tang C; Tanaka D; Yoon DH; Nozaki Y; Fujita H; Akitsu T; Sekiguchi T; Shoji S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR.
    Xu X; Yuan H; Song R; Yu M; Chung HY; Hou Y; Shang Y; Zhou H; Yao S
    Biomicrofluidics; 2018 Jan; 12(1):014103. PubMed ID: 29333205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Droplet Consistency Monitoring and Cell Detection via Laser Excitation.
    Tkaczyk AH; Tkaczyk ER; Norris TB; Takayama S
    J Mech Med Biol; 2011 Mar; 11(1):1-14. PubMed ID: 29755161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct incorporation of lipophilic nanoparticles into monodisperse perfluorocarbon nanodroplets via solvent dissolution from microfluidic-generated precursor microdroplets.
    Seo M; Matsuura N
    Langmuir; 2014 Oct; 30(42):12465-73. PubMed ID: 25188556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay.
    Li HT; Wang HF; Wang Y; Pan JZ; Fang Q
    Talanta; 2020 Sep; 217():120997. PubMed ID: 32498829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
    Jeyhani M; Gnyawali V; Abbasi N; Hwang DK; Tsai SSH
    J Colloid Interface Sci; 2019 Oct; 553():382-389. PubMed ID: 31226629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device.
    Ten Klooster S; Sahin S; Schroën K
    Sci Rep; 2019 May; 9(1):7820. PubMed ID: 31127142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production.
    Teston E; Hingot V; Faugeras V; Errico C; Bezagu M; Tanter M; Couture O
    Biomed Microdevices; 2018 Oct; 20(4):94. PubMed ID: 30377821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Customizable and Low-Cost Ultraviolet Exposure System for Photolithography.
    Reynolds DE; Lewallen O; Galanis G; Ko J
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets.
    Deng CF; Su YY; Yang SH; Jiang QR; Xie R; Ju XJ; Liu Z; Pan DW; Wang W; Chu LY
    Lab Chip; 2022 Dec; 22(24):4962-4973. PubMed ID: 36420612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.