BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33562883)

  • 1. Screening of Yeast Display Libraries of Enzymatically Treated Peptides to Discover Macrocyclic Peptide Ligands.
    Bowen J; Schneible J; Bacon K; Labar C; Menegatti S; Rao BM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display.
    Bacon K; Blain A; Burroughs M; McArthur N; Rao BM; Menegatti S
    ACS Comb Sci; 2020 Oct; 22(10):519-532. PubMed ID: 32786323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries.
    Bacon K; Menegatti S; Rao BM
    Methods Mol Biol; 2022; 2491():387-415. PubMed ID: 35482201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Target-Displaying Magnetized Yeast in Screening mRNA-Display Peptide Libraries to Identify Ligands.
    Bacon K; Bowen J; Reese H; Rao BM; Menegatti S
    ACS Comb Sci; 2020 Dec; 22(12):738-744. PubMed ID: 33089990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast.
    Yi L; Taft JM; Li Q; Gebhard MC; Georgiou G; Iverson BL
    Methods Mol Biol; 2015; 1319():81-93. PubMed ID: 26060071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design and Intramolecular Cyclization of Hotspot Peptide Segments at YAP-TEAD4 Complex Interface.
    Zhang D; He D; Pan X; Liu L
    Protein Pept Lett; 2020; 27(10):999-1006. PubMed ID: 32286937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein selection using yeast surface display.
    Gera N; Hussain M; Rao BM
    Methods; 2013 Mar; 60(1):15-26. PubMed ID: 22465794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.
    Yi L; Gebhard MC; Li Q; Taft JM; Georgiou G; Iverson BL
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7229-34. PubMed ID: 23589865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands.
    Menegatti S; Hussain M; Naik AD; Carbonell RG; Rao BM
    Biotechnol Bioeng; 2013 Mar; 110(3):857-70. PubMed ID: 23108907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands.
    Iglesias-Bexiga M; Castillo F; Cobos ES; Oka T; Sudol M; Luque I
    PLoS One; 2015; 10(1):e0113828. PubMed ID: 25607641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP.
    Linn H; Ermekova KS; Rentschler S; Sparks AB; Kay BK; Sudol M
    Biol Chem; 1997 Jun; 378(6):531-7. PubMed ID: 9224934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening Yeast Display Libraries against Magnetized Yeast Cell Targets Enables Efficient Isolation of Membrane Protein Binders.
    Bacon K; Burroughs M; Blain A; Menegatti S; Rao BM
    ACS Comb Sci; 2019 Dec; 21(12):817-832. PubMed ID: 31693340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities.
    Giebel LB; Cass RT; Milligan DL; Young DC; Arze R; Johnson CR
    Biochemistry; 1995 Nov; 34(47):15430-5. PubMed ID: 7492543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands.
    Chen HI; Einbond A; Kwak SJ; Linn H; Koepf E; Peterson S; Kelly JW; Sudol M
    J Biol Chem; 1997 Jul; 272(27):17070-7. PubMed ID: 9202023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel strategy for engineering high-affinity proteins by yeast display.
    Richman SA; Healan SJ; Weber KS; Donermeyer DL; Dossett ML; Greenberg PD; Allen PM; Kranz DM
    Protein Eng Des Sel; 2006 Jun; 19(6):255-64. PubMed ID: 16549400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular-Based Selections Aid Yeast-Display Discovery of Genuine Cell-Binding Ligands: Targeting Oncology Vascular Biomarker CD276.
    Stern LA; Lown PS; Kobe AC; Abou-Elkacem L; Willmann JK; Hackel BJ
    ACS Comb Sci; 2019 Mar; 21(3):207-222. PubMed ID: 30620189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides.
    Gu Y; Iannuzzelli JA; Fasan R
    Methods Mol Biol; 2022; 2371():261-286. PubMed ID: 34596853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structures of the YAP65 WW domain and the variant L30 K in complex with the peptides GTPPPPYTVG, N-(n-octyl)-GPPPY and PLPPY and the application of peptide libraries reveal a minimal binding epitope.
    Pires JR; Taha-Nejad F; Toepert F; Ast T; Hoffmüller U; Schneider-Mergener J; Kühne R; Macias MJ; Oschkinat H
    J Mol Biol; 2001 Dec; 314(5):1147-56. PubMed ID: 11743730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained Combinatorial Libraries of Gp2 Proteins Enhance Discovery of PD-L1 Binders.
    Kruziki MA; Sarma V; Hackel BJ
    ACS Comb Sci; 2018 Jul; 20(7):423-435. PubMed ID: 29799714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly avid magnetic bead capture: an efficient selection method for de novo protein engineering utilizing yeast surface display.
    Ackerman M; Levary D; Tobon G; Hackel B; Orcutt KD; Wittrup KD
    Biotechnol Prog; 2009; 25(3):774-83. PubMed ID: 19363813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.