BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33562932)

  • 1. An Electrochemical Sensing Platform Based on Iridium Oxide for Highly Sensitive and Selective Detection of Nitrite and Ascorbic Acid.
    Dodevska T; Shterev I; Lazarova Y
    Acta Chim Slov; 2018 Dec; 65(4):970-979. PubMed ID: 33562932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A graphite pencil electrode with electrodeposited Pt-CuO for nonenzymatic amperometric sensing of glucose over a wide linear response range.
    Sreekumar A; Navaneeth P; Suneesh PV; Nair BG; Babu TGS
    Mikrochim Acta; 2020 Jan; 187(2):113. PubMed ID: 31919707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium Oxide Hexacyanoferrate as an Effective Electrode Modifier for Amperometric Detection of Iodate and Hydrogen Peroxide.
    Dodevska T; Shterev I; Lazarova Y; Hadzhiev D
    Acta Chim Slov; 2020 Dec; 67(4):1216-1226. PubMed ID: 33533451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles.
    Salimi A; Hallaj R; Soltanian S; Mamkhezri H
    Anal Chim Acta; 2007 Jun; 594(1):24-31. PubMed ID: 17560381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination.
    Mehmeti E; Stanković DM; Hajrizi A; Kalcher K
    Talanta; 2016 Oct; 159():34-39. PubMed ID: 27474276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation.
    Oh JW; Yoon YW; Heo J; Yu J; Kim H; Kim TH
    Talanta; 2016 Jan; 147():453-9. PubMed ID: 26592632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Electrochemical and Photoelectrochemical Sensing Platform Based on Porphyrinic Metal-Organic Frameworks for Determination of Ascorbic Acid.
    Xu X; Li CH; Zhang H; Guo XM
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra.
    Gai P; Zhang H; Zhang Y; Liu W; Zhu G; Zhang X; Chen J
    J Mater Chem B; 2013 Jun; 1(21):2742-2749. PubMed ID: 32260980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide.
    Wu GH; Wu YF; Liu XW; Rong MC; Chen XM; Chen X
    Anal Chim Acta; 2012 Oct; 745():33-7. PubMed ID: 22938603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Electrodeposition Synthesized Aunps/Mxene/ERGO for Selectivity Nitrite Sensing.
    Wang T; Wang C; Xu X; Li Z; Li D
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres.
    Li Y; Jiang Y; Song Y; Li Y; Li S
    Mikrochim Acta; 2018 Jul; 185(8):382. PubMed ID: 30032413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalysis of water oxidation by H2O-capped iridium-oxide nanoparticles electrodeposited on spectroscopic graphite.
    Mirbagheri N; Chevallier J; Kibsgaard J; Besenbacher F; Ferapontova EE
    Chemphyschem; 2014 Sep; 15(13):2844-50. PubMed ID: 25044749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice.
    Hutton EA; PauliukaitÄ— R; Hocevar SB; Ogorevc B; Smyth MR
    Anal Chim Acta; 2010 Sep; 678(2):176-82. PubMed ID: 20888449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric determination of nitrite using natural fibers as template for titanium dioxide nanotubes with immobilized hemin as electron transfer mediator.
    Ranjani B; Kalaiyarasi J; Pavithra L; Devasena T; Pandian K; Gopinath SCB
    Mikrochim Acta; 2018 Feb; 185(3):194. PubMed ID: 29594516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells.
    Jo A; Kang M; Cha A; Jang HS; Shim JH; Lee NS; Kim MH; Lee Y; Lee C
    Anal Chim Acta; 2014 Mar; 819():94-101. PubMed ID: 24636416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode array microprobe.
    Tolosa VM; Wassum KM; Maidment NT; Monbouquette HG
    Biosens Bioelectron; 2013 Apr; 42():256-60. PubMed ID: 23208095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite.
    Jiao M; Li Z; Li Y; Cui M; Luo X
    Mikrochim Acta; 2018 Apr; 185(5):249. PubMed ID: 29623497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A copper-based metal-organic framework decorated with electrodeposited Fe
    Amali RKA; Lim HN; Ibrahim I; Zainal Z; Ahmad SAA
    Mikrochim Acta; 2022 Sep; 189(9):356. PubMed ID: 36038741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine.
    Sharifi E; Salimi A; Shams E
    Bioelectrochemistry; 2012 Aug; 86():9-21. PubMed ID: 22296821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.