BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 33563177)

  • 61. The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells.
    Yang Z; He L; Lin K; Zhang Y; Deng A; Liang Y; Li C; Wen T
    Clin Cancer Res; 2017 Nov; 23(21):6673-6685. PubMed ID: 28765327
    [No Abstract]   [Full Text] [Related]  

  • 62. JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance.
    Wang T; Fahrmann JF; Lee H; Li YJ; Tripathi SC; Yue C; Zhang C; Lifshitz V; Song J; Yuan Y; Somlo G; Jandial R; Ann D; Hanash S; Jove R; Yu H
    Cell Metab; 2018 Jan; 27(1):136-150.e5. PubMed ID: 29249690
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ZMYND8 is a master regulator of 27-hydroxycholesterol that promotes tumorigenicity of breast cancer stem cells.
    Luo M; Bao L; Chen Y; Xue Y; Wang Y; Zhang B; Wang C; Corley CD; McDonald JG; Kumar A; Xing C; Fang Y; Nelson ER; Wang JE; Wang Y; Luo W
    Sci Adv; 2022 Jul; 8(28):eabn5295. PubMed ID: 35857506
    [TBL] [Abstract][Full Text] [Related]  

  • 64. LGR5 Promotes Breast Cancer Progression and Maintains Stem-Like Cells Through Activation of Wnt/β-Catenin Signaling.
    Yang L; Tang H; Kong Y; Xie X; Chen J; Song C; Liu X; Ye F; Li N; Wang N; Xie X
    Stem Cells; 2015 Oct; 33(10):2913-24. PubMed ID: 26086949
    [TBL] [Abstract][Full Text] [Related]  

  • 65. WNT pathway inhibitor pyrvinium pamoate inhibits the self-renewal and metastasis of breast cancer stem cells.
    Xu L; Zhang L; Hu C; Liang S; Fei X; Yan N; Zhang Y; Zhang F
    Int J Oncol; 2016 Mar; 48(3):1175-86. PubMed ID: 26781188
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Role of Breast Cancer Stem Cells and Some Related Molecular Biomarkers in Metastatic and Nonmetastatic Breast Cancer.
    El Abbass KA; Abdellateif MS; Gawish AM; Zekri AN; Malash I; Bahnassy AA
    Clin Breast Cancer; 2020 Aug; 20(4):e373-e384. PubMed ID: 32299754
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state.
    Lim YY; Wright JA; Attema JL; Gregory PA; Bert AG; Smith E; Thomas D; Lopez AF; Drew PA; Khew-Goodall Y; Goodall GJ
    J Cell Sci; 2013 May; 126(Pt 10):2256-66. PubMed ID: 23525011
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dietary compound isoliquiritigenin prevents mammary carcinogenesis by inhibiting breast cancer stem cells through WIF1 demethylation.
    Wang N; Wang Z; Wang Y; Xie X; Shen J; Peng C; You J; Peng F; Tang H; Guan X; Chen J
    Oncotarget; 2015; 6(12):9854-76. PubMed ID: 25918249
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The expression and significance of insulin-like growth factor-1 receptor and its pathway on breast cancer stem/progenitors.
    Chang WW; Lin RJ; Yu J; Chang WY; Fu CH; Lai A; Yu JC; Yu AL
    Breast Cancer Res; 2013 May; 15(3):R39. PubMed ID: 23663564
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL.
    Piggott L; Omidvar N; Martí Pérez S; French R; Eberl M; Clarkson RW
    Breast Cancer Res; 2011 Sep; 13(5):R88. PubMed ID: 21914219
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer.
    Niu T; Zhang W; Xiao W
    Cancer Cell Int; 2021 Jan; 21(1):31. PubMed ID: 33413418
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mammary stem cells, self-renewal pathways, and carcinogenesis.
    Liu S; Dontu G; Wicha MS
    Breast Cancer Res; 2005; 7(3):86-95. PubMed ID: 15987436
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gene methylation in gastric cancer.
    Qu Y; Dang S; Hou P
    Clin Chim Acta; 2013 Sep; 424():53-65. PubMed ID: 23669186
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Epigenetic regulation of cancer stem cell genes in triple-negative breast cancer.
    Kagara N; Huynh KT; Kuo C; Okano H; Sim MS; Elashoff D; Chong K; Giuliano AE; Hoon DS
    Am J Pathol; 2012 Jul; 181(1):257-67. PubMed ID: 22626806
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Are breast cancer stem cells the key to resolving clinical issues in breast cancer therapy?
    Shima H; Yamada A; Ishikawa T; Endo I
    Gland Surg; 2017 Feb; 6(1):82-88. PubMed ID: 28210556
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Resistance to Cell Death and Its Modulation in Cancer Stem Cells.
    Safa AR
    Crit Rev Oncog; 2016; 21(3-4):203-219. PubMed ID: 27915972
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mammary development and breast cancer: the role of stem cells.
    Ercan C; van Diest PJ; Vooijs M
    Curr Mol Med; 2011 Jun; 11(4):270-85. PubMed ID: 21506923
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of Notch-1 down-regulation on malignant behaviors of breast cancer stem cells.
    Peng GL; Tian Y; Lu C; Guo H; Zhao XW; Guo YW; Wang LQ; Du QL; Liu CP
    J Huazhong Univ Sci Technolog Med Sci; 2014 Apr; 34(2):195-200. PubMed ID: 24710932
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of microRNAs in the regulation of breast cancer stem cells.
    Liu S; Clouthier SG; Wicha MS
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):15-21. PubMed ID: 22331423
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cancer stem cell epigenetics and chemoresistance.
    Crea F; Danesi R; Farrar WL
    Epigenomics; 2009 Oct; 1(1):63-79. PubMed ID: 22122637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.