These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33563284)
1. Effects of reverse deployment of cone-shaped vena cava filter on improvements in hemodynamic performance in vena cava. Chen Y; Xu Z; Deng X; Yang S; Tan W; Fan Y; Han Y; Xing Y Biomed Eng Online; 2021 Feb; 20(1):19. PubMed ID: 33563284 [TBL] [Abstract][Full Text] [Related]
2. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter. Swaminathan TN; Hu HH; Patel AA J Biomech Eng; 2006 Jun; 128(3):360-70. PubMed ID: 16706585 [TBL] [Abstract][Full Text] [Related]
3. A novel deployment design of vena cava filters might be the solution to their blockage problem. Chen Z; Fan Y; Deng X Med Hypotheses; 2011 Dec; 77(6):990-2. PubMed ID: 21903340 [TBL] [Abstract][Full Text] [Related]
4. [Hemodynamic analysis of a new retrievable vena cava filter]. Chen S; Feng H; Li X; Gu J; Wang X; Cao P; Wang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):245-253. PubMed ID: 31016941 [TBL] [Abstract][Full Text] [Related]
5. Improvement of hemodynamic performance using novel helical flow vena cava filter design. Chen Y; Zhang P; Deng X; Fan Y; Xing Y; Xing N Sci Rep; 2017 Jan; 7():40724. PubMed ID: 28112186 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation and Feng H; Li C; Feng H Comput Methods Biomech Biomed Engin; 2023; 26(16):2034-2046. PubMed ID: 36625716 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulation and in vitro experimental study of the hemodynamic performance of vena cava filters with helical forms. Huang YX; Li Q; Liu M; Zhao M; Chen Y Sci Rep; 2024 Aug; 14(1):17903. PubMed ID: 39095447 [TBL] [Abstract][Full Text] [Related]
8. Computational modeling of blood flow in the TrapEase inferior vena cava filter. Singer MA; Henshaw WD; Wang SL J Vasc Interv Radiol; 2009 Jun; 20(6):799-805. PubMed ID: 19406666 [TBL] [Abstract][Full Text] [Related]
9. Optimizing inferior vena cava filter design: A computational fluid dynamics study on strut configuration for enhanced hemodynamic performance and thrombosis reduction. Kim BJ; Lee C Heliyon; 2024 Jun; 10(11):e32667. PubMed ID: 38912484 [TBL] [Abstract][Full Text] [Related]
10. In vitro assessment of the hemodynamic effects of a partial occlusion in a vena cava filter. Couch GG; Kim H; Ojha M J Vasc Surg; 1997 Apr; 25(4):663-72. PubMed ID: 9129622 [TBL] [Abstract][Full Text] [Related]
11. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC. Tedaldi E; Montanari C; Aycock KI; Sturla F; Redaelli A; Manning KB Med Eng Phys; 2018 Apr; 54():44-55. PubMed ID: 29487036 [TBL] [Abstract][Full Text] [Related]
12. Design optimization of vena cava filters: an application to dual filtration devices. Singer MA; Wang SL; Diachin DP J Biomech Eng; 2010 Oct; 132(10):101006. PubMed ID: 20887016 [TBL] [Abstract][Full Text] [Related]
13. Hemodynamic effects of clot entrapment in the TrapEase inferior vena cava filter. Leask RL; Johnston KW; Ojha M J Vasc Interv Radiol; 2004 May; 15(5):485-90. PubMed ID: 15126659 [TBL] [Abstract][Full Text] [Related]
14. A novel way to reduce thrombus build-up in vena cava filters. Chen Z; Zhan F; Fan Y; Deng X Catheter Cardiovasc Interv; 2011 Nov; 78(5):792-8. PubMed ID: 21523890 [TBL] [Abstract][Full Text] [Related]
15. Study of helical flow inducers with different thread pitches and diameters in vena cava. Chen Y; Deng X; Shan X; Xing Y PLoS One; 2018; 13(1):e0190609. PubMed ID: 29298357 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamic effects of blood clots trapped by an inferior vena cava filter. López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F Int J Numer Method Biomed Eng; 2020 Jul; 36(7):e3343. PubMed ID: 32323487 [TBL] [Abstract][Full Text] [Related]
17. Hemodynamic Analysis of VenaTech Convertible Vena Cava Filter Using Computational Fluid Dynamics. Wang J; Huang W; Zhou Y; Han F; Ke D; Lee C Front Bioeng Biotechnol; 2020; 8():556110. PubMed ID: 33195121 [TBL] [Abstract][Full Text] [Related]
18. [Non-deployment of branches of a vena cava filter. Elements of prevention]. Etienne G; Hevia M; Fond B; Parthenay P; Constantin JM J Mal Vasc; 1996; 21(5):312-4. PubMed ID: 9026549 [TBL] [Abstract][Full Text] [Related]
19. Removal of the OptEase retrievable vena cava filter is not feasible after extended time periods because of filter protrusion through the vena cava. Ashley DW; Mix JW; Christie B; Burton CG; Lochner FK; McCommon GW; Matoy GC; Solis MM; Donner RS; Dalton ML; Tyson CS; Newman WH J Trauma; 2005 Oct; 59(4):847-52. PubMed ID: 16374272 [TBL] [Abstract][Full Text] [Related]
20. An in vitro comparison of the hemodynamics of two inferior vena cava filters. Couch GG; Johnston KW; Ojha M J Vasc Surg; 2000 Mar; 31(3):539-49. PubMed ID: 10709068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]